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ABSTRACT

We present a novel resampling technique for particle filtering al-
gorithms based on a model of attractive and repulsive forces. The
new approach avoids the common degeneracy problem found in tra-
ditional resampling algorithms that prevents precise tracking of a
source. The algorithm is applied to an 8 microphone source local-
ization problem and is shown to accurately localize a single speaker.

1. INTRODUCTION

Particle filter theory, also known as Bayesian filtering, is becom-
ing increasingly popular as an alternative method to discrete filter-
ing for detection, tracking and identification in complex systems.
The method promises good accuracy and performance in various
domains such as mobile robotics, computer vision, economics and
network communications where it is often desired to find the true
value of a parameter based on its noisy observations.

One crucial step in the implementation of particle filtering al-
gorithms is the choice of the resampling method used between each
predict-update iteration of the filter. As is often reported in litera-
ture [1] [2], the principal problem with particle resampling is degen-
eracy or otherwise known as particle impoverishment. Particles of
considerable weights are continually resampled over those of lower
weights, up to the point where they become cluttered and confined
in a small space, thus preventing the filter from detecting anything
else from that point onwards.

We propose a new approach to resampling where the particles
are regarded as having attractive and repulsive forces between them,
proportional to their weight and respective to their mutual proximity.
The particles are still updated according to the system model, but the
suggested resampling approach ensures a certain cohesion (attractive
forces) and coverage (repulsive forces) between the particles. The
new method named cohesive particle filtering is applied to a classic
acoustic source localization problem, extending on the works of [3].

The remainder of this paper is organized as follows. Section 2
presents the basic theory behind particle filtering. Section 3 then ex-
poses the degeneracy problem and its common solutions. We then
introduce our cohesive particle filtering in Section 4, followed by re-
sults of its implementation on a source localization problem in Sec-
tion 5. Further ideas and avenues are finally discussed in Section
6.

2. THEORY

Particle filtering is an effective solution to the problem of estimat-
ing the true value of a variable (a position, an orientation, a speed,
etc.) when presented with its noisy observations. The general idea
of particle filtering is to enhance iteratively the probabilities that the
real value be x given all past observations y where y = f(x). This

iterative process is ran at time index k such that we are looking for a
measure of p(xk|y1:k). The derivation of the predict-update formula
follows from Baye’s chain rule [4], and is given by:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(1)

This is the most encountered form of the predict-update equation
that describes the iterations of a particle filter. Looking at the right
hand side of (1), we note that :

1. p(yk|xk) is the likelihood of observing y given the current
estimation x; this is called the update step.

2. p(xk|y1:k−1) equals
�

p(xk|xk−1) · p(xk−1|y1:k−1)dxk−1

(a) p(xk|xk−1) is called the predict step and describes the
probability that a transition occurs from xk−1 to xk (2
different positions, for example)

(b) p(xk−1|y1:k−1) was found on the last iteration

3. p(yk|y1:k−1) is a normalizing constant such that the sums
of p(xk|y1:k) for all possible xk’s add up to unity

In a practical implementation of (1), one needs the update step,
the predict step and a discrete set of x’s onto which the iteration will
be evaluated. The update and predict step are usually easily obtained
(or approximated). What is problematic is the choice of discrete x’s
onto which the filter will be applied. In a high dimensional space,
the number of x’s can grow very large. For example, pinpointing the
location of a speaker in a 3 dimensional 10m cubic room to a resolu-
tion of 1cm yields 109 points to consider, for each analyzing frame.
In the particle filtering terminology, those x’s are called particles
and their probability of occurrence derived from (1) is called their
weight w.

In practice, the filter will be evaluating (1) 99% of the time on
particles yielding near 0 probability. The speaker is in a narrow space
and it is useless to continually evaluate all the positions where proba-
bility of presence is low; this fact has been observed [4] and resam-
pling algorithms have been introduced to solve the problem. The
idea behind resampling is to eliminate small probability x’s and re-
place them in higher probabilistic regions of space (ie, to duplicate
particles with higher weights).

Several resampling techniques exist, the most popular ones be-
ing systematic resampling, residual resampling and stratified resam-
pling. In systematic and residual resampling [2], a deterministic ap-
proach is taken to resample the M particles such that a particle with
normalized weight wi gets duplicated �wi · M� times on the next
iteration. On the other hand, stratified resampling [5] generates M
random trials with probability wi of picking particle xi; the number
of times a particle is picked represents the number of its duplica-
tions for the next iteration. That being said, the higher the weight
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of a particle, the more it will be duplicated, thus having the effect
of concentrating the particles in a high probabilistic region of space.
That can be detrimental to the filter’s performance since particles
become confined in a small space and the filter’s view degenerates.
This problem called degeneracy of the particle filter, is also refered
by some other authors as particle impoverishment.

3. MOTIVATION

As stated above, the main drawback of conventional resampling is
degeneracy, as illustrated in Fig. (1) where very few noisy observa-
tions y lead to successive duplication of particles around the noise
source, degenerating the solution space, thus missing the real source
when it appears later (much stronger) in other parts of space.

|k kp y x

Noisy observation

Source

Time

kx

Fig. 1. Illustration of the degeneracy problem in a 1-D case

In fact, it has been established by the Kong-Liu-Wong theorem
(Kong et al. 1994) that the variance of the weights can only increase
over time; degeneracy is thus inevitable. Some improvements to
classic resampling have then been suggested to correct this degen-
eracy problem. The condensation algorithm introduced by [6] tries
to avoid degeneracy by injecting particles sampled uniformly from
the solution space at each predict-update step; the contribution of the
sensing is thus ”boosted” compared to that of the predictive model.
As an example, the algorithm evaluates p(yk|xk) for a set of uni-
formly (and coarsely) distributed xk to sense events outside of the
current particles’ region.

Another similar modification suggests systematically keeping a
small fraction of the particles xk−1 to time k, independently of their
weights, such that lower weight particles are not necessarily elimi-
nated. Yet another technique called kernel smoothing (J. Liu and M.
West, 2000) consists of adding small perturbations to the particles
between each iteration to avoid eventual cluttering of the particles.

Though those fixes have proven effective in reducing degeneracy
for some cases, their behavior is often hard to tune and predict; how
many new particles should we inject? how closely should we sample
p(yk|xk) when injecting new particles? how many particles should
we systematically keep between each iteration? how much perturba-
tion should we introduce in kernel smoothing? What we suggest here
is a different approach which requires less tuning, where the motion
of the particles is based on attractive and repulsive forces; cohesive
particle filtering is the term we use to describe our method.

4. METHOD

4.1. Resampling

To solve state degeneracy, we want to prevent the particles from col-
lapsing to a single point when noise or simply no source is present,
but at the same time we require them to concentrate around real

sources when they are detected. This induces the ideas of attraction
and repulsion between the particles. Attraction will ensure cohesion
between the particles in regions of space maximizing p(yk|xk), and
repulsion will prevent them from collapsing to a single point (thus
preventing excessive degeneracy). Mathematically, particle xi will
undergo a change in position at time k of

−→
∆i given by (2) and (3).

xk+1,i = xk,i +
−→
∆i (2)

−→
∆i =

N�
j,j �=i

(fa(i, j) − fr(i, j))
−→ui,j (3)

In (3), fa(i, j) and fr(i, j) are respectively scalar forces of at-
traction and repulsion between two particles xi and xj , and −→ui,j is
a unit vector pointing from xi to xj . The functions we propose as
fa(i, j) and fr(i, j) are:

fa(i, j) = Ka
w2

j���−→di,j

���
, fr(i, j) = Kr

1���−→di,j

���
2 (4)

where
−→
di,j is the geometric vector from particle xi to xj . Sub-

stituting (4) into (3) leads to:

−→
∆i =

N�
j,j �=i

�
��Ka

w2
j���−→di,j

���
− Kr

1���−→di,j

���
2

�
��−→ui,j (5)

where the constants Ka and Kr can be adjusted to control the
spread of the particles in the solution space. Specifically, increasing
Ka and reducing Kr will result in particles staying closer to each
other, and vice-versa; one can thus tradeoff bias for variance of the
final position estimate. Two constants are used (instead of one) to
control the speed of attraction and repulsion. As an example, in-
creasing Ka will lead to faster reacting particles than if Kr were
reduced (because of the w2

j term). The behavior of particles can
thus be customized by changing those 2 constants. This resampling
method differs somewhat from traditional sampling importance re-
sampling techniques where particles are destroyed and replicated as
a function of their current weight. Here, particles are rather moved
as a function of their neighbor particles’ weights. The final estimate
of the true state is then taken as a weighted mean of the particles
state. One notices in this case that the complexity of the algorithm is
proportional to O

�
N2
	

where N is the total number of particles.

4.2. Prediction & update

The cohesive particle filter is implemented and applied to a micro-
phone array single source localization problem based on the works
of [3]. The far-field assumption is adopted and a steered beamformer
is used to calculate wk = p(yk|xk) where the particles xk represent
unit norm vectors (ie, points on a sphere). For debugging and visu-
alization purposes only, the sphere is tessellated and the energy wk

is also calculated on all joints of the tesselated sphere and used to
color its faces (the higher the energy, the brighter the face); this is
not a necessity of the algorithm, as it would beat the point of having
particles in the first place. As explained in [3], the energy w of a
point −→v (unit-norm vector) is calculated as:

w =

M�
k=1

M�
l=k+1

Rkl(τkl,i) (6)
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where M is the number of microphones, Rkl(·) is the cross-
correlation between data from microphones k and l and τkl is pre-
calculated as:

τkl =
fs

c

�−→v · −→dk,l

�
(7)

where
−→
dk,l is a geometric vector from microphone k to micro-

phone l. The calculation of w at time k constitutes the update step
as wk � p(yk|xk). The prediction step is trivial; since we assume
that the speaker doesn’t move considerably between sound frames,
we will not modify the position of the particles (the resampling step
is able to track the speaker by itself).

4.3. Estimation

Finally, after each step, a weighted mean of the particles is taken as
an estimate of the true state (direction) of the source, as defined by:

−−−−−−−→
estimatek =

�
i wk,i

−→vk,i�
i wk,i

(8)

4.4. Summary

The algorithm thus operates in the following steps:

1. Acquire a new sound frame

2. For all particles:

(a) Calculate the τkl delays using (7)

(b) Update: Evaluate (6)

(c) Estimate: Evaluate (8)

(d) Resample: Evaluate (3) and (2)

3. Goto 1)

The evolution of the particles on the sphere of possible directions
can be visualized with simulation tools to adjust the constants Ka

and Kr as well as the number of particles thus controlling the spread
of the particle cloud. Such visualizations, similar to Fig. 2, can be
concatenated into videos that depicts the evolution of the algorithm
in time. Samples videos illustrating the behavior of the algorithm
can be downloaded from the author’s web site [7].

Fig. 2. Evolution of the particles in time

5. RESULTS

Using multi-microphone recordings of a stationary speaker, we will
evaluate and compare the performances of 4 different systems, namely:

our newly introduced cohesive particle filter (CPF), stratified resam-
pling with kernel smoothing (KS), stratified resampling with con-
densation (CND) and without any filtering at all (NF). The record-
ings were taken with an array of 8 microphones arranged in a cube-
like configuration; short French sentences are uttered by a female
speaker and last about 4 seconds. In the case of the KS system, an
additive gaussian noise of variance σ2 = 0.05 was found to give
optimal results, while injecting the 5 sphere vertices maximizing
p(xk|yk) for the CND system showed best localization performance.
To ensure reproducibility of the following results, the experimental
conditions are described in table 1 and the Matlab code as well as
the speech samples used to implement and test the filter are readily
available from the author’s web page [7].

Sample information
Sampling frequency 44.1kHz
Segment length 4s
Analysis window Hamming
Frame length 50ms
Frame overlap 50%
Speed of sound (c) 340.29m/s

Filter parameters
Number of particles 40
Ka 0.004
Kr 0.002

Table 1. Experimental conditions

As mentioned previously, a weighted mean of the particles is
generated on each frame as the final estimate of the speaker’s lo-
cation. Since this represents a position in 3 dimensional space (a
unit-norm vector), its azimuth and elevation angles (in degrees) are
extracted for plotting purposes. Moreover, the sum of the particles’
non-normalized weights is used as a confidence measure to con-
trol the color intensity of the plotted points; it is understood that
in speech pauses, no useful localization information can be obtained
and that the confidence can only be low. It is the filter’s job to keep
the output constant so that tracking can be done properly when the
speaker is heard again.

The results in Fig. 3 show the ability of the 4 systems (CPF,
KS, CND and NF) to locate a single speaker located at azimuth =
−96o and elevation = 38o. Since the speaker location is initially
unknown to the filter, the particles are placed randomly on the top
of the sphere, over a radius of roughly 30 degrees. The systems
are then started and are all seen to successfully locate the speaker
when speech activity is present (after around 0.5 second here). The
CPF is the stablest of all since particle attraction prevents the cloud
of particles from degenerating and diverging in speech pauses. The
KS correctly identifies the speaker’s location but is seen to be less
stable than the CPF. For the CND and NF systems, all joints of the
tesselated sphere need to be evaluated by (1); the 5 most energetic
directions get injected for resampling in the CND system, while the
most energetic is taken as the final estimate in the NF system (since
no filtering is applied). As can be seen, both CND and NF systems
easily loose track of the speaker, especially during speech pauses.

To quantify the improvements of the systems, a measure of the
MSE (Mean Squared Error) taken over 6 different recordings was
computed and is depicted in Fig. 4. The error measured is simply
the angular difference between the estimated direction and the actual
one, taken over the last second (40 frames of 50ms overlapping by
50%) of each simulation; only the last second is considered to allow
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Fig. 3. Speaker localization with a) Cohesive particle filter (CPF) b) Kernel smoothing (KS) c) Condensation (CND) d) No particle filter (NF)
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Fig. 4. MSE of the 3 systems for 6 different samples

filters to stabilize around the speaker’s location (as seen on Fig. 3,
stabilization times are on the order of 0.5 to 1 second). Our CPF
method shows the best results and is seen to offer an MSE of less
than 10 degrees, constantly lower than the KS system. The MSE
is significantly higher when contribution from the sensing is given
importance (CND), as small reflections or noise sources easily dis-
turb the filter; the NF system is obviously the most sensitive to noise
since it essentially operates on a per-frame basis.

On a complexity standpoint, we note that CND and KS are roughly
O(N log N) because of the select with replacement operation. For
a convenient number of particles in the given application N < 100,
the greater complexity of our method (O(N2)) was not found to
be an issue for real-time operation. The performance difference de-
pends on the exact form of fa and fr in (3), as well as optimization
and several other implementation details.

6. CONCLUSION

To overcome degeneracy problems in particle filter implementations,
we have introduced a new kind of resampling algorithm based on
attractive and repulsive forces of particles. These forces are function
of the distance between the particles and their weight; particles of
higher weights attract their neighbors so that a source can be tracked
while repulsive forces prevent the particles from collapsing onto a
single point.

The newly introduced filter called a cohesive particle filter was
implemented and tested on several 8-microphone recordings to lo-
cate a stationary speaker, and was shown to offer good accuracy and
stable measurements, even during speech pauses. Simple tuning can
control the spread of the particles such that it can be adapted to a
wide range of filtering problems.

In its current implementation, the filter can only track a sin-
gle source; it could be extended to several sources by segmenting
the particles into different cohesive groups each behaving indepen-
dently. Furthermore, attractive and repulsive forces other than the
ones suggested here could be used to control differently the behav-
ior of the filter’s particle cloud. Strategies to reduce the overall com-
plexity of the algorithm could be investigated as well. Finally, the
theoretical consistency of our resampling step with the convergence
of the weighted set of samples to the true MMSE state will be studied
in a near future.
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