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ABSTRACT

This paper introduces a novel ML based approach to channel iden-
tification for time variant SIMO (Single Input Multiple Output) sys-
tems fed by a stochastic process. We focus on the particular case
where the unknowns are represented by the channels phases, that
find applications in RADAR interferometry. Starting from the rig-
orous formulation of the ML estimator, we derive an approximation
that makes use of mixers and FIR filters only. The computational
efficiency and the robustness versus model errors of the resulting es-
timator make it suitable for its implementation is an adaptive frame-
work. An application in topography reconstruction from real SAR
(Synthetic Aperture Radar) data is presented.

1. INTRODUCTION

The present work approaches the problem of estimating the phase of
a number of constant-envelope signals modulating a single realiza-
tion of a stochastic process, according to the block diagram in Fig.
1.
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Fig. 1. Time variant SIMO system

The meaning of the quantities in Fig. 1 is the following:

o n: is the channel index (n = 1...N)

e s(tr): isthe source, characterized as a realization of a white
normal circular process s(tx) ~ N (0,02), with o2 known.

e yn(tx): is the observed data in each channel

e ¢, (tr): is the phase of the n — th channel modulation. It
represents the unknown of the problem.

e fn(tx): isthe n — th channel filter. It is supposed to be a
known LTI FIR filter
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e wy, (tx): represents the superposed noise on the n — th chan-
nel. It is assumed to be a white normal circular process:
wn(tg) ~ N (O, Ji), with o2, known.

All the signals are supposed to be properly sampled (see section
2) at time instants ty.

Such a model could apply to SAR interferometry (InSAR), where
the estimate of the phases is required to infer information about the
Earth’s topography [1]. Nevertheless, the problem is posed in the
most general terms.

We first observe that only NV — 1 phases may be estimated out
of N outputs. This is a consequence of the invariance of the source
statistics with respect to a multiplication for a complex exponen-
tial exp (jp,,(t)). For this reason in the following we will assume
@, (t) = 0vL.

In an adaptive framework, we require an estimate to be accu-
rate and local, therefore we assume a parametric model (a 1°* or-
der polynomial is suite in most cases) for the unknown phases. In
the following we will account for this by defining the unknown as
0, (t) = ¢, (t;c), where c is the vector of parameters to be esti-
mated.

2. MODEL DISCRETIZATION AND OUTPUT STATISTICS

In most applications the model is time continuos, so that the real
unknowns of the problem are the functions ¢,, (¢), rather than their
sampled versions. It may be shown that a proper discrete-time model
is obtained by sampling the continuous-time outputs, y,, (t), at a rate
[2]:

fs 2 By + By, (M
B, and B, being respectively the maximum (bilateral) bandwidth of
the outputs y,, (t), and of the modulating terms exp (j¢,, (t)). Under
this condition it is possible to derive the statistical properties of the
output samples directly from the discrete time model in Fig. 1.

We may express the model in Fig. 1 in a compact matricial for-
mulation. Considering M samples out of each output and defining
D = L+ M — 1, where L is the length of the channel filters, we
get:

Yn = Fn§ns + ann (2)

where y,, is an M x 1 column vector, F,, is the M x D ma-
trix which implements the convolution of a sequence for the channel
filter fr(tx), ®n is a diagonal D x D matrix such that

®,, = diag {exp(jp, (tx))}

sisa D x 1 column vector, and so is the noise vector w,,.

Under condition (1) it may be shown that the output vectors y,,
are multivariate zero-mean normal circular processes with covari-
ance [2]:

k=01,..D-1 (3)

E [ynyﬂ = (0% 460 m02) F.8,BUFE (4
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where §,, is the unit sample sequence.

3. ML PHASE ESTIMATE

The ML estimate of the parameters vector c is given by:

¢ = argmax {L (y1,y2..,¥yn;€)} (%)

where the likelihood function L () follows directly from the expres-
sion of the joint pdf of the outputs.

exp (—yHC_ly)

L :p(y17y2-~-7yN|C) =

wherey = [ yi' y3 yi }H and C is the covariance
matrix: C = F [yyH] .

The ML estimate achieves very good accuracy [3], provided that
the data fit the model, as it will be shown later. Problems may arise
with model errors, in dependence on the conditioning number of the
covariance matrix. This aspect becomes more critical as the number
of output channels increases, as a consequence of the strong correla-
tions among the channels which occur for many combinations in the
parameters space.

The impact of model errors is mitigated by adapting the estimate
by means of a mobile window sliding over the data, so that only a
simplified knowledge about the data statistic is required. However,
the adaptive implementation raises severe computational problems,
since the ML estimator (5) requires a matrix inversion for every value
of the parameters characterizing the pdf of data (c, 02, o2, and the
matrices coefficients).

4. SIMPLIFIED ML ESTIMATE

The log-likelihood function of two channels L5 may be rewritten as
follows, by means of the Bayes theorem:

log (L12) = — HY1 - §1|2H21—é — log (‘CW’) Q)

where ¥12 is the optimum estimate (in the MMSE sense) of y1
from y2 and Cy 3 is the covariance matrix of y1 conditioned to ys.
The symbol = is used here with the meaning of equality but for a
term independent from the unknowns c.

The expression of ¥1| corresponds to the Best Linear Unbiased
Estimator (BLUE) [4]:

Y12 = 1F181®5 Flys = 7512 ®)
where F; = Fg (Fng) -1 is the pseudoinverse of F2 and

o  SNR
024+02 1+SNR

v = )

So far, by equation (7) we may interpret the log-likelihood func-
tion as the L2 norm of the innovation e12 = y1 — ?1‘2 defined by
-1
01\2'
Ci2 = E [ensetb|yz] = E [y1y1'] — E [J112¥1]2]

10
=F.F — °F, 8, FIF,®,®F! (10)

4.1. Reduction of costs

Most of the computational costs in equation (7) come from the kernel
Cl_é, which is equivalent to M filters of M taps each, where M
is the window length. In this section, we derive an approximation
suitable to describe the whitening kernel C1_|§ by means of a single
LTI filter.

Let us suppose that the estimate window is sufficiently long with
respect to the channel filters f,, (¢x). Under this hypothesis most of
the output samples may be considered as the result of a circular,
rather than linear, convolution - i.e.: we are neglecting the border
effects -. As a consequence, we have that the channel matrices F,,
may be considered as circulant, and thus diagonalized by the DFT
(Discrete Fourier Transform) matrix W:

F, ~ WA, W7 an

where the elements of the diagonal matrix A,, represent the DFT of
the channel filter f,(¢x). Under hypothesis (11) the expression of
the covariance matrix results

01‘2 =F [elgeflg] ~
W (AlA{{ - 72A1WH¢1<I>§IF£F2<I>2<I>{IWA{{) wi
(12)

The bracketed kernel is diagonal only if the phase difference o, (tx)—
©,(t1) is linear, as happens for a 1°* order polynomial model for the
phases (i.e. a frequency shift), but it shows a high diagonal predomi-
nance for any phase matrix. Therefore, the eigenvalues of C;j, may
be approximated by the elements on the kernel diagonal, referred
to as | A.(k)|>. This approximation is equivalent to considering the
innovation as a stationary process, and thus |X.(k)|? represent its
power spectrum. So far, equation (7) becomes:

log (L12) ~ ,
> Vi) = ap)| )7+ tog (IAe(k)P) (1

where Y1 (k), ﬁp(k) are the Fourier transform of y1, y12.

Equation (13) may be implemented in time domain by means
of a circular convolution, even though no cost reduction is obtained
with respect to (7), since the circular filter is still equivalent to M
LTI filters. However, since we’re neglecting the border effects, the
circular filter may be replaced by a single LTI filter, thus achieving
a cost reduction factor of M. As an alternative, equation (13) may
be implemented directly in the frequency domain. The time and fre-
quency domain implementations are equivalent, since both of them
are based on the norms of signals which are approximated at their
borders. The same concepts apply to the block F; in equation (8).

The efficient time-domain estimator is shown in Fig. 2.a.

As a further advantage, this estimator may keep into account
non-stationary features, such as changes in the SNR or even in the
channel filters, simply by modifying the value of «y or the filter coef-
ficients depending on the position of the estimate window.

4.2. Model relaxation

Under the hypothesis of low SNR it may be shown that the quantity
(2):

EY ME)?Ae(®) 2]+ logAe(k)]*  (14)
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Fig. 2. Time domain implementation: the filters are implemented as
LTI FIR and referred to by means of their Fourier transform. The
output of both (a) and (b) is the log-likelihood computed at time t,,.
(a) Simplified ML estimator (13); (b) simplified ML estimator under
low SNR approximation (15)

doesn’t depend on the phase parameters so that, in mean, the log-
likelihood may be expressed as:

log (L12) = Y~ (k)| * {7” [Vij2(k)[* — 2Re Y2 (k) V" (k) }
(15)

According to the discussion in the last section, equation (15) may be
implemented through the scheme in Fig. 2.b.

The low SNR hypothesis find its justification if we take into ac-
count the errors coming from an inaccurate knowledge of the real
data generation mechanism. These model errors may be character-
ized quite sensibly as gaussian, so that their final effect is to raise the
total amount of noise [5]. Hence the estimator (15) not only implies
a significative cost reduction with respect to the exact ML imple-
mentation (5), but also allows to relax the hypotheses on which the
model is based. Therefore, it does not require the exact knowledge
about the source statistics, the parametrization of the phase matrices,
and the channel filters.

4.3. Extension to multichannel

An extension of the concepts exposed to the case of an arbitrary
number of channels is possible, but not straightforward. However,
we experienced that, if the phases are represented by a 1% order
polynomial model, and the channel filters f,(¢) are bandpass, the
ML estimate (5) can be well approximated by optimizing the sum of
the log-likelihood functions of every couple of data.

N N

E—argmax{z > log(an(yn,ym;c))} (16)

m=1n=m-+1

This couple-based approach to the multichannel case is similar to
the one in [6]. From a statistical point of view, this approach is op-
timum if the couples may be considered as uncorrelated. It can be
shown that this method achieves the same performance as the op-
timum a-posteriori combination of the single estimates (considered
as uncorrelated with each other), but without any need to know the
exact variance of every single estimate [2].

5. EXPERIMENTAL RESULTS

This section shows the results achieved by running different esti-
mators over a two output synthetic dataset. We refer to 2D data,
described by the coordinates (tx, z5). The data are characterized as
white in the z direction, so that the likelihood over a 2D window
is simply given by the products of the single likelihoods computed
along direction .

First, we consider a data generated according to the model in
Fig. 1. Let the phases be described by a first order polynomial
model:

©1 (tks zns fo, o) =0
@y (tk, Tn; fo, o) = 27 fotk + 1

Fig. 3 shows the RMSE of the estimate of the frequency fo. In
this case the model is perfectly known, and thus the best result is
achieved by the ML estimator. The simplified estimator, imple-
mented both through (13) and (15), achieves a good performance and
gets closer to the ML as the window length increases. The Cramer
Rao bound was computed numerically, according to (6). In order to
provide a comparison with a commonly used frequency estimator,
we plotted the curve relative to the estimates obtained by maximiz-
ing the periodogram of the Hermitian product of the two outputs.
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Fig. 3. Estimate of the frequency shift fo : Root Mean Square Er-
ror versus Signal to Noise Ratio. RMSE is normalized to the signal
bandwidth B. The simplified ML estimators (13) and (15) are com-
pared to the ML estimator, the periodogram, and the Cramer-Rao
bound. The estimates are performed over a 7x7 (left) and 11x11
(right) estimate window. The true value of fo (normalized to the
sampling frequency) is 0.2. The normalized bandwidth of the sig-
nals (B) is 0.4
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The effect of model errors is taken into account in Fig. 4. The
data simulate two SAR images correspondent to a real topography,
so that the phase model (17) must be considered only as a first or-
der approximation of the real phase. This introduces a model error,
which causes stability problem to the ML estimator defined by (5).
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Fig. 4. Scatter plots: the colorbar indicates the logarithm of
the number of points correspondent to a certain couple of values
(fo/B, ﬁ) /B). (left) ML estimator (5); (right) simplified ML esti-
mator under low SNR approximation (15). Figure shows how the
proposed method manages to avoid the stability problems experi-
enced by the ML estimator.

6. AN EXAMPLE OF APPLICATION TO INSAR

Let us now show an example of usage of the simplified ML estimator
applied to the estimate of topographic features by means of multi-
baseline SAR interferometry. The problem is really 2D, but can it
be well approached by iterating two separable 1D estimates. As an
example, let ¢, xx be the coordinates, spanning the 2D image space,
the first estimate is iterated in direction ¢; by assuming the following
1%* order polynomial model for the n — th channel phases:

@, (e, T Ve, g ah ) = 2Tbpvity, + 4, (18)

where b,, is a known parameter referred to as "normal baseline" and
vy the unknown parameter to be retrieved (usually referred to as
“wavenumber shift" [1]), directly related to the topographic slopes
(along ti). The phase offsets v,, are nuisance parameters, and thus
their estimate is not shown. The estimator is implemented through
formula (16), computing the single log-likelihoods according to (15),
so as to keep into account eventual model mismatches.

As an example, a dataset of N = 6 SAR images acquired form
ENVISAT satellite close to Los Angeles has been processed, to de-
rive the local estimate of slope-dependent parameter v;.

This estimate in shown in Fig. 5, compared to the same quantity
computed using an external DEM (Digital Elevation Model) gener-
ated by SRTM (Shuttle Radar Topography Mission) in year 2000.
The results are satisfying, as the estimates map manages to exploit
the superior resolution of the ENVISAT data with respect to the
SRTM DEM. Most errors are localized in correspondence of high
topographic slopes, which represent a very critical case for every
SAR system, or in correspondence of points where the single input
model is not suitable due to scenery changes.

Fig. 5. (left) Map of vy computed from the SRTM DEM,; (right) map
of v; estimated from ENVISAT data by means of (15). The area is
about 6 x4 K'm?, correspondent to 600 x 800 samples. The estimate
window size is 7 X 9. The normalized bandwidth of data in the ¢
direction is 0.4.

7. CONCLUSIONS

In this work we faced the problem of estimating the modulations ap-
plied to the same process from two or more filtered outputs. In the
two channels case, we derived a ML-based solution suitable when-
ever the model of data is known only approximately and the com-
putational costs represent a critical issue. We partially discussed the
problem of the multichannel estimate (N>2), and proposed a solu-
tion which is simple, stable and revealed itself as effective in the
applications.

Further studies are foreseen for optimizing the multichannel case,
in order to design an estimator more adherent to the joint statistics of
data. In a framework where the number of channel is high, carrying
out this objective would also result in a significative cost reduction,
as the estimator would automatically drop all the combinations non-
informative about the phase estimate.
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