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ABSTRACT

In wireless systems with multiple antennas at the access points, the

downlink power has to be spatially optimized to allow several si-

multaneous users. We consider two different MMSE criteria for a

multi-user downlink CDMA system and determine the optimal trans-

mit beamforming weights. The MMSE criteria with and without

receiver gain control are compared for a system where the transmit-

ter is equipped with an antenna array and the receivers have single

antennas. The MMSE and SINR versus different number of users

is shown and the effect of including the gain control in the MMSE

criteria is clearly demonstrated.

1. INTRODUCTION

To improve the link quality in wireless systems in terms of the signal

to interference plus noise ratio (SINR), transmitters may be equipped

with antenna arrays [1]. When the transmit antenna array has a prop-

erly determined beam pattern, it directs the signal power towards the

desired receiver, while suppressing the signal gain towards the other

users in the system. These transmit beamformers affect not only the

desired user but also the interference at the other receivers. Therefore

the optimal beamformers need to take all other users into account.

Since the receivers usually have to be low cost units employing only

one receive antenna, precoding at the transmitter is very attractive for

downlink systems. This precoding can be carried out with or without

channel state information (CSI). Here, we study systems where per-

fect channel knowledge is available at the transmitters. Such CSI can

be obtained either using feedback of estimates done at the receiver

end or by exploiting channel reciprocity, using channel estimates ob-

tained in the uplink.

Many different downlink beamforming strategies have been pro-

posed in the literature, see e.g. [2] and references therein for an

overview. One major issue is how to take the quality of service (QoS)

for all the individual users into account. One possibility is to opti-

mize with respect to the worst SINR among the users. However, this

leads to a complicated optimization problem that has to be solved

jointly for all users, see [2, 3]. In [4], it was recently proposed to

combine the QoS constraints of all the users into a single minimum

mean square error (MMSE) formulation. The advantage is that the

problem decouples and the solution easily can be obtained for each

user separately. An alternative approach that also leads to a simple

decoupled solution is to maximize the harmonic mean of the SINRs,

see [1, 2]. In [5] an alternative MMSE formulation is considered

for the design of spatio-temporal pre-filters for CDMA, including a

proper handling of transmit power constraints. A minimax solution

allocating identical MSE to all users is derived in [6].

Here, we focus on the MMSE beamforming formulation and

study an extension, also proposed in [7], which includes the fact

that every receiver can compensate for differences in the absolute

gain. This is clearly a more relevant formulation, but unfortunately,

the computational complexity is increased. In comparison to [7], the

solution is here formulated for a CDMA system and an alternative

algorithm is proposed. Also, the performance of the different beam-

forming formulations is illustrated by numerical simulations.

2. SYSTEM MODEL

Consider a downlink code division multiple access (CDMA) system

where the transmitter is equipped with multiple antenna elements

and the receivers with single antennas [4]. In order to keep the nota-

tion easy, a single-cell system is considered.

Let the number of users be K and denote the base band signal trans-

mitted for the kth user by

dk(t) =
∞�

l=−∞
ck(t − T l)sk[l] (1)

where ck(t) and sk[l] are the spreading waveform and data symbol

sequence for the kth user, respectively. The symbols are normalized

such that E[|sk[l]|2] = 1 and T denotes the length of the symbol

interval.

The spreading waveform can be written as

ck(t) =

N−1�
n=0

p(t − Tcn)ck[n] (2)

where p(t) is a shaping pulse, ck[n] is the spreading code and Tc

is the chip duration such that T = NTc. The spreading waveform

has finite support over 0 ≤ t ≤ T and is normalized such that� T

0
|ck(t)|2dt = 1. When the number of transmit antenna elements

is L, the total transmitted signal can be written as

z(t) =

K�
k=1

wkdk(t) (3)

where wk is an L × 1 beamforming vector for the kth user.

Assuming a flat fading environment, the channel from the transmitter

to the qth user can be represented by the L × 1 vector gq . The total

received signal at the qth receiver is then given by

xq[l] = � lT

(l−1)T

(gH
q z(t) + nq(t))c

∗
q(t − lT )dt

=

K�
k=1

ρq,kg
H
q wksk[l] + nq[l]

(4)
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where ρq,k =
� T

0
c∗q(t)ck(t)dt is the spreading code cross-correlation,

(·)H denotes the Hermitian transpose, nq(t) is the noise at the qth

user and nq[l] =
� lT

(l−1)T
c∗q(t − lT )nq(t)dt is the noise projected

on the spreading waveform. To keep a compact formulation, the re-

ceived signals are re-written in vector form as

x[l] = � x1[l] x2[l] . . . xK [l] � T
(5)

=

�����
R �

����� ����� gH
1

gH
2

...

gH
K

	 


� � w1 w2 . . . wK �
� ����

	 


� s[l] +

����� n1[l]
n2[l]

...

nK [l]

	 


�
where [R]q,k = ρq,k, s[l] = [s1[l] s2[l] . . . sK [l]]T , and �, (·)T

denote the element-wise multiplication and transpose, respectively.

3. MMSE FORMULATIONS

This section presents two formulations of the MMSE criterion and

the corresponding algorithms designed to obtain the optimal transmit

beamformers. Also, we briefly review a couple of alternative criteria

which are included for reference in the numerical examples below.

The acronyms defined in the titles will be used in Section 4.

3.1. MMSE Without Gain Control (MMSE NGC)

When the transmit beamformers {wk} are properly determined, the

received signals represent estimates of the transmitted symbols. The

transmitter weights are now chosen such that the MSE between the

transmitted symbols and the estimated symbols is minimized [4], i.e.

{wMMSE,k} = arg min
W

E[||s[l]−([R�(GHW)]s[l]+n[l])||2]
(6)

where W = [w1 w2 . . . wK ], G = [g1 g2 . . . gK ], and n[l] =
[n1[l] n2[l] . . . nK [l]]T . When there is no gain control at the re-

ceivers, a closed-form expression for the optimal transmit beam-

formers is available. Defining Rk = diag(rk) and rk as the kth

column of R, the optimal beamformers are given by [4]

wk = (RkG
H)†ek (7)

where (·)† denotes the pseudo inverse and ei is the ith column of

the K × K identity matrix IK×K . The total transmitted power is

defined implicitly by the MMSE formulation. It can be observed

from (7) that the optimal transmit beamformers can be determined

individually. Note also that (7) reduces to zero forcing beamforming

when K ≤ L.

3.2. MMSE With Gain Control (MMSE GC)

The above criterion attempts to enforce the same signal power at

all receivers. This is unnecessarily restrictive since the equalizers

at the receivers can scale the signal and the decoding performance

only depends on the SINR, not the absolute scaling. This fact can be

included in the MMSE criterion by introducing scaling gains at the

receivers. Letting α = [α1 . . . αK ] be the vector containing scaling

gains for the K users, the optimization problem can be written as

{wMMSE,k, α} = arg min
W,α

E[||s[l] − A([R � (GHW)]s[l] + n[l])||2]
s.t.Tr(WHW) ≤ P0

(8)

where A = diag(α). The constraint on the total transmit power is

introduced to avoid a solution where the scaling gains go to zero and

the beamformers to infinity. Note that this constraint will be fulfilled

with equality at the optimum.

Since this cost function is not jointly convex in W and α, we

propose an iterative algorithm, where problem (8) is divided into

two parts. First, the optimal beamformers are determined while the

receiver gains are fixed and then the optimal receiver gains are deter-

mined while the beamformers are kept fixed. The complete solution

is obtained by iterating between these two steps and is guaranteed to

converge since the MSE is minimized in each step. However, the it-

eration may get stuck in a local optimum, and there is no guarantee to

find a global optimum. An alternative solution is proposed in [7], us-

ing a reformulation into an equivalent virtual uplink problem which

can be solved by a semidefinite program.

For fixed receiver gains α, the transmit beamformers {wi} are

determined by solving

{wMMSE,k} = arg min
W

E[||s[l] − Aŝ[l]||2]
s.t. Tr(WHW) ≤ P0

(9)

where ŝ[l] = ([R � (GHW)]s[l] + n[l]).

Let −→r = vec (R),
−→
i = vec (I), −→w = vec (W), where vec(·)

is the vectorization operator and I is the identity matrix, and in-

troduce Ad = IK×K ⊗ A and R = diag(−→r ) where ⊗ denotes

the Kronecker product. By substituting M = AdR(I ⊗ GH) and

b = −MH−→
i in (9), the optimal beamformers are obtained by solv-

ing

{wMMSE,k} = arg min−→w
−→wH

MHM−→w + (10)

bH−→w + −→wH
b + const

s.t. −→wH−→w ≤ P0

which is a least squares minimization problem over the volume of a

sphere. This problem can be solved by using Lagrange multipliers

and the solution is given by [8]

−→w = −(MHM + Iλ)−1b (11)

where λ is chosen such that −→wH−→w = P0, using standard line search [9].

The next step is to determine the optimal receiver weights α
while keeping the transmit beamformers fixed. This is done by min-

imizing MSE = E[||s[l] − A(Hs[l] + n[l])||2], where H = R �
(GHW). Solving the least-squares problem yields

αi =
H∗

ii

||Hi||2 + σ2
i

(12)

where Hii is the (i, i)th element of H, Hi is the ith row of H, (·)∗
denotes the complex conjugate and σ2

i = E[ni[l]n
H
i [l]] is the noise

power of the ith user.

It should be noted that each wk only depends on the correspond-

ing αk, while αk depends on all w. The algorithm solving prob-

lem (8) is summarized in Table 1.

Note that (6) is a special case of (8) when all receive gains α are set

equal to one and the total power constraint is high enough.

3.3. Max Harmonic Mean SINR (MHM SINR)

An alternative formulation that leads to a decoupled closed form so-

lution for each beamformer is obtained by maximizing the harmonic
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1. Choose initial values for the receiver gains α.

2. Determine the optimal beamformers by using (11).

3. Determine the optimal receiver gains by using (12).

4. Stop when desired degree of convergence in obtained.

Otherwise go back to step 2.

Table 1. Solution of problem (8).

mean of the SINR [1, 2]. From (4), the SINR for the ith link can be

written as

SINRi =
wH

i gig
H
i wi�

n�=i |ρi,n|2wH
n gigH

i wn + σ2
i

. (13)

Maximizing the harmonic mean is equivalent to minimizing

K�

i=1

SINR
−1
i =

K�

i=1

�
n�=i |ρi,n|2wH

n gig
H
i wn + σ2

i

wH
i gigH

i wi
=

K�

n=1

wH
n (

�

i�=n

|ρi,n|2
βi

gig
H
i )wn + const (14)

where βi = wH
i gig

H
i wi is a constraint on the desired power level

for the received signal at each user.

The beamformers maximizing this harmonic mean are given by

wi = arg max
wH

i gig
H
i wi

wH
i (

�
n�=i

|ρn,i|2
βn

gngH
n + κI)wi

(15)

where a regularization term κ has been added to keep the overall

interference level low.

3.4. Max Min SINR (Equal SINR)

Absolute fairness between the users is obtained by the solution to

max
{wi}

min
k

SINRk

s.t.
�

k

‖wk‖2 ≤ P0

(16)

which can be obtained using the algorithm in [3].

4. SIMULATION RESULTS

The difference between the two proposed MMSE criteria is evalu-

ated by considering a scenario with one multi-antenna transmitter

and several single antenna receivers. The transmitter is equipped

with 4 antenna elements and positioned at the origin. The receivers

are randomly positioned in a circular area and the channel from the

transmitter to one of the receivers is modeled as

g = γplγsfs (17)

where γpl = 1
r2 is the distance dependent path loss, r is the dis-

tance between the transmitter and the corresponding receiver, γsf =

10−Ψ/10 is the shadow fading from large objects with Ψ modeled

as a Gaussian distributed variable with zero mean and standard de-

viation 8 [dB] and s is a vector containing independent and identi-

cally distributed CN(0, 1) elements representing multipath scatter-

ing in a rich scattering environment. This is a very simplified chan-

nel but good enough for our applications. The spreading codes are
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Fig. 1. MMSE with and without gain control at the receivers.

randomly generated sequences of ±1. The same total transmitted

power is used for all of the algorithms and the transmit power and

noise power are chosen such that the mean SINR for one receiver on

the cell boundary would be 20 [dB] if only a single antenna element

was used at the transmitter. All the results have been averaged over

3000 different scenarios.

Fig. 1 shows the resulting MMSE of the optimal beamformers

for the two MMSE criteria (calculated according to the cost function

of (8), replacing A by a scalar for the MMSE NGC solution). A

significantly lower MMSE is obtained by including the gain control.

To evaluate the fairness properties of the algorithms, the mean SINR,

max SINR and min SINR among the users is plotted in Figures 2, 3

and 4, respectively. In the MHM SINR algorithm, the parameters

were set to βi = gH
i gi and κ = 0.01 [1, 2]. Comparing the two

MMSE criteria, a higher mean SINR and peak SINR is clearly ob-

tained by including the receiver gain control into the MMSE crite-

rion. However, this will often lead to a solution where no power at

all is allocated to the weakest users. A related result can be found

in [10], where the “water-filling” like solution found for minimiza-

tion of the sum MSE of a single MIMO link may allocate zero power

to some users. This is a problem in systems with strict delay require-

ments but may also provide multi-user diversity gains [11] if adap-

tive data rates and scheduling is used. Comparing with the other

methods, we see that the maximum harmonic mean SINR method

provides very similar performance at a lower computational com-

plexity, and that it avoids the all-zero solution to the weakest users.

Also, note that with the Equal SINR method, most users pay a high

price for the increased fairness of the worst users.

5. CONCLUSIONS

Several strategies can be used to determine a set of beamformers

to do spatial division multiple access. Algorithms that optimize the

quality of service for the worst user have been proposed in [2, 3],

however the computational complexity is fairly high. Combining the

individual MSEs of each user into a single MMSE formulation for

the full system was proposed in [4], which leads to a closed form so-

lution where each beamformer can be determined separately. How-

ever, the performance can be improved significantly for most users
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Fig. 2. Average of mean-SINR [dB] versus K.

by incorporating a scale factor at each receiver into the MMSE cri-

terion, at the expense of an increased computational complexity. If

low computational complexity is a major issue, we have also shown

that the maximum harmonic mean of the SINR [1, 2] is a good alter-

native.
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