
ACCURATE APPROXIMATION OF ERROR PROBABILITY ON MIMO CHANNELS AND ITS
APPLICATION TO ADAPTIVE MODULATION AND ANTENNA SELECTION

Fatma Kharrat-Kammoun, Sandrine Fontenelle

Motorola Labs Paris
Saint Aubin, 91193 Gif-sur-Yvette, France

fatma.kharrat,sandrine.fontenelle@motorola.com

Joseph J. Boutros
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ABSTRACT

A new approximation for the conditional error probability on
quasi-static multiple antenna (MIMO) channels is proposed.
For a fixed channel matrix, it is possible to predict the per-
formance of quadrature-amplitude modulations (QAM) trans-
mitted over the MIMO channel in presence of additive white
Gaussian noise (AWGN). The tight approximation is based on
a simple union bound for the point error probability in the n-
dimensional real space. A Pohst or a Schnorr-Euchner lattice
enumeration is used to limit the local Theta series inside a fi-
nite radius sphere. As applications to this approximation, we
describe a new adaptive QAM modulation and a new antenna
selection criterion.

1. INTRODUCTION

The achievable information rate of conventional systems with
a single antenna at both transmitter and receiver is limited by
the modulation size. Therefore, most of recent wireless sys-
tems use multiple transmit and receive antennas to achieve
higher data rates with a high diversity order [9]. Several tech-
niques have been proposed to improve the performance of
these multiple antenna systems regarding the wireless channel
conditions, such as adaptive modulation [6][7] and antenna
selection [5]. In both cases, to select the appropriate modula-
tion or antenna set to be considered at the transmission, a rele-
vant metric has to be considered to precisely assess the MIMO
scheme performance. Taricco and Biglieri gave the exact pair-
wise error probability in [8] for frequency non-selective mul-
tiple antenna systems. The pairwise error probability consid-
ered in their paper is the mathematical expectation over all
channel realizations. Thus, their closed form expression can-
not be used for adaptive modulation nor for antenna selection.
In this paper, we propose a new approximation of the condi-
tional error probability in a MIMO system. Based on this
tight approximation conditioned on a fixed channel realiza-
tion, two examples of application are described in this article:
adaptive modulation and antenna selection. The paper is or-
ganized as follows. Section 2 introduces the notations and the
channel model. The error probability approximation is given

in section 3. Sections 4 and 5 describe respectively two appli-
cations proposed for this approximation: adaptive modulation
and antenna selection. Conclusions are drawn in the last sec-
tion.

2. SYSTEM MODEL

We consider an uncoded transmission system with nt transmit
(Tx) antennas and nr receive (Rx) antennas. The channel is
assumed to be frequency non-selective and quasi-static. The
nt × nr MIMO channel matrix H = [hi,j ] is constant during
Tc channel uses, where Tc is the channel coherence time. In
the latter, one time unit is equal to one transmission period.
The coefficients hi,j are independent zero-mean unit-variance
complex Gaussian variables that take independent values each
Tc periods. For one channel use, the input-output model is

r = sH + ν (1)

where s = (s1, . . . , snt
) is the transmit complex vector, r is

the receive vector and ν is an AWGN with variance N0 per
real dimension. Each Tx symbol sk belongs to a Mk-QAM,
�(sk) and �(sk) ∈ {±1,±3, . . . ,±(

√
Mk−1)}, k = 1 . . . nt,

�() and �() stand for real and imaginary parts. The nt QAM
constellations are not necessary identical, their Cartesian prod-
uct is denoted CQAM . Since s is limited to CQAM ⊂ ZZ

2nt ,

then x = sH belongs to a finite set denoted CH, called re-
ceive constellation. The cardinality of the constellation CH

is
∏nt

k=1 Mk. The spectral efficiency of the uncoded QAM
system is

∑nt

k=1 log2(Mk) bits per channel use. It is assumed
that perfect channel state information (CSI) is available only
at the receiver . The detection is based on Maximum-Likelihood
(ML) criterion. thanks to e.g. a sphere decoder [1][10] if
nt ≤ nr or a rank deficient MIMO system sphere decoder [4]
for nt > nr.

3. ERROR PROBABILITY APPROXIMATION

3.1. Error probability approximation for nt ≤ nr

Without loss of generality we assume that nt = nr. The
study is similar for the asymmetric channel, when nr > nt.
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Fig. 1. An example of lattice constellation in IR2. Points are
distinguished according to the number of crossing facets.

The performance study of the quasi-static multiple antenna
model given in (1) is carried out thanks to lattices and sphere
packings theory [2]. The product x = sH can be interpreted
as a point in the Euclidean space IRn, n = 2nt = 2nr. The
point x ∈ CH belongs to a real lattice Λ of rank n. This
means that CH is a finite subset of the lattice Λ. The real
version of H corresponds to a generator block matrix G =
[gij ] = [Gij ], where the block Gij is[

g2i,2j g2i,2j+1

g2i+1,2j g2i+1,2j+1

]
=

[ �(hi,j) �(hi,j)
−�(hi,j) �(hi,j)

]
. (2)

The lattice representation of a multiple antenna channel con-
verts the MIMO model given in (1) into a simple AWGN
channel model r = x + ν. It is noticed that for a given con-
stellation point x = sH, the local Theta series [2] (i.e. the
number of points surrounding x at a distance d) depends on
the position of x within the constellation. Given this obser-
vation, the constellation CH can be partitioned into n + 1
subsets

CH =
n⋃

�=0

I� (3)

where I� contains lattice points located on the intersection of �
facets in CH. To illustrate the above observation, we consider
an example of lattice constellation within IR2 as depicted on
Fig. 1. The local Theta series of the indicated points (black
filled) are not identical.

Considering (3), the error probability of the constellation
can be written as

Pe(CH) =

n∑
�=0

p�Pe(I�) (4)

where the factor p� is the probability that a point of the con-
stellation CH belongs to the subset I� and Pe(I�) is the error

probability associated to I�. When the same M-QAM is ap-
plied on all Tx antennas, p� is expressed, using binomial law
of parameter 2/

√
M (probability to be at the edge), as

p� =

(
n
�

) (
2√
M

)� (
1 − 2√

M

)n−�

. (5)

When distinct QAMs are used, p� is given by

p� =
∑
L�,j

n∏
i=1

(
2√

M[(i+1)/2]

)�j
i
(

1 − 2√
M[(i+1)/2]

)1−�j
i

(6)
where L�,j = (�j

1 . . . �j
i . . . �j

n) denotes a length n binary vec-
tor whose components satisfy the sum condition � =

∑n
i=1 �j

i ,

� ∈ [0...n] and 1 ≤ j ≤
(

n
�

)
. The integer �j

i is set to 1 if

�(si) or �(si) belong to {±(
√

M�i/2� − 1)}.
Applying the union upper bound on Pe(I�), the error proba-
bility Pe(CH) is upper bounded by

Pe(CH) ≤
n∑

�=0

p�
1

|I�|
∑
x∈I�

imax∑
i=1

τx,�,i × Q

(
di

2
√

N0

)
(7)

where τx,�,i is the number of points located at a distance di

from the point x ∈ I�. The coefficients τx,�,i of the local
Theta series are easily determined from the original Theta se-
ries of the random lattice Λ as follows:
Step1: Generate lattice points y = zG ∈ Λ located at a dis-
tance di from the origin, z ∈ ZZ

n. The Gram matrix M =
GGT is full rank and positive-definite, so the Short Vectors
algorithm could be applied to find these points [3], with poly-
nomial complexity in n.
Step2: For each y found in the previous step, check if the
translate y + x belongs to the constellation CH and increment
τx,�,i accordingly.
To compute numerical results, we limited the number of points
in (7) to Nx = min(1000,

∏nt

k=1 Mk). The size of a sub-
set I� is approximated by |I�| ≈ p� × Nx. The number of
shells in the local Theta series has been limited to a number
imax where the most distant shell is at 2d2

Emin(Λ), where
dEmin is the minimum Euclidean distance of the lattice. The
conventional factor 2 is fully justified by its corresponding
3dB signal-to-noise ratio attenuation. If the local Theta se-
ries (around x) is empty, then the new search radius can be
increased up to 4d2

Emin(Λ) (6dB attenuation).

3.2. Error probability approximation for nt > nr

In this subsection, we discuss the case when nt > nr, i.e.,
when less observations are available at the receiver than the
number of independent transmit data streams. The expres-
sions (5) to (7) remain valid for the studied case. The n × n
matrix M = GGT is rank deficient and the evaluation of the
coefficients τx,�,i based on the short vectors algorithm has
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Fig. 2. Average error probability of a 4 × 2, 2 × 4 and 4 × 4
MIMO channels (Tc = 10). Analytic approximation (contin-
uous lines) and Monte Carlo simulation (dotted lines)

an exponential complexity in n − m, where n = 2nt and
m = 2nr. To reduce the search complexity for rank defi-
cient MIMO system, we adapt to our problem the algorithm
proposed in [4] for the generalization of the sphere decoder.
The basic idea of this solution consists in forcing the positive-
definiteness of the matrix M. The search of the points y =
zG inside a sphere of radius C centered at the origin can be
written as

‖y‖2 = zMzt = zM̃zt − αzzt ≤ C (8)

where M̃ = M+αIn is a definite-positive matrix. Inequality
(8) is equivalent to

zM̃zt = ‖zR̃‖2 ≤ C + αzzt ≤ C + α

n∑
i=1

z2
maxi

(9)

where R̃ is a n × n upper triangular matrix resulting of the
cholesky factorization of M̃ and zmaxi

=
√

M�i/2� − 1.
Hence, it is possible to apply the short vectors algorithm to
search the points x̃ = zR̃ belonging to the sphere centered at
the origin of square radius C̃ = C+α

∑n
i=1 z2

maxi
. This algo-

rithm outputs all the integer components z verifying (9). Only
those satisfying (8) are kept. Notice that the complexity of the
proposed method depends on the value of the new radius C̃
that increases with the number of transmit antennas and es-
pecially with high constellation sizes. A judicious choice of
the factor α reduces the complexity too. For simulation, α is
fixed to 0.5.

4. APPLICATION TO ADAPTIVE MODULATION

Fig. 3 illustrates a MIMO system with nt and nr active trans-
mit and receive antennas. At the receiver side, a channel es-
timation block provides H without error and N0 to the adap-
tation block. The PER computation function employs (7) to
compute PER = Pe(CH) for the different QAM combina-
tions. For example, if Nq distinct QAMs are used, the PER

Feedback link
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Modulation
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Spatial Division
Multiplexing

Channel
Estimation

Modulation
Selection

MIMO
channel
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noise

noise
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ML
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Fig. 3. Adaptive modulation scheme for MIMO channels

should be computed Nq times if same QAM is applied on Tx
antennas and Nnt

q times when distinct QAMs are used. The
final block selects the optimal solution (M1,M2, . . . , Mnt

)opt

that maximizes
∑nt

k=1 log2(Mk) under the constrain PER ≤
PERtarget. Finally, the transmitter is informed about the se-
lection via a perfect feedback to adjust the modulations ap-
plied on the Tx antennas. The complexity of the adaptive
scheme depends on the number of modulations to be tested in
order to select the optimal one. The poor adaptive modulation
when all QAMs are identical has a low adaptation complex-
ity proportional to Nq . On the contrary, the efficient adaptive
modulation when QAM constellations may be distinct per Tx
antenna has an adaptation complexity proportional to Nnt

q .
The list of all QAM combinations can be reduced from Nnt

q

down to (Nq − 1)nt + 1 without performance loss. As ex-
ample, for nt = Nq = 4, we sort the transmit antennas such
that ||H1||2 ≤ . . . ≤ ||H4||2, where Hi is the ith row of H

and ||Hi||2 =
∑nt

j=1 |hij |2. Then, we start from the most ro-
bust combination (all 4-QAMs) upward to the most efficient
combination (all 256-QAMs). Only one integer is changed
from one row to another according to a decreasing order of
Tx antennas power. Thanks to the dichotomy method applied
on the reduced list, a maximum of 4 evaluations of Pe(CH)
are required instead of Nnt

q = 256. Fig. 4 presents the perfor-
mance of a 4 × 4 MIMO system in terms of error probability
averaging over channel. The proposed adaptive modulation is
shown in the middle surrounded by two extreme non-adaptive
modulations, the all 4-QAMs and the all 256-QAMs, where
PERtarget = 10−3. Clearly, the all 4-QAMs satisfies the
constraints on PER but exhibits a severe loss in spectral ef-
ficiency. The all 256-QAMs has a maximum rate of 32 bits
per channel use but does not guarantee the target PER in the
whole range of interest 15dB ≤ Eb/N0 ≤ 30dB. The adap-
tive modulation policy leads to an optimization of the spectral
efficiency while keeping the error probability close to the tar-
get.

5. APPLICATION TO ANTENNA SELECTION

The antenna selection scheme can be represented by a figure
equivalent to Fig. 3. At the receiver side, the channel estima-
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Fig. 4. Point Error Rate with the adaptive modulation policy,
4 × 4 MIMO channel (Tc = 100).
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Fig. 5. Error probability with transmit antenna selection, 4 ×
4 MIMO channel (Tc = 100). Select 4 transmit antennas
among 5 Tx antennas with different selection criteria

tion and N0 are provided to the PER computation block. The

PER (7) is evaluated for

(
Nt

nt

) (
resp.

(
Nr

nr

))
possi-

ble combinations of antennas in the case of transmit (resp.
receive) selection, where Nt and Nr are the available Tx and
Rx antennas. Then the final block selects the set of antennas
at the transmitter and/or the receiver that minimizes the er-
ror probability. Finally, both blocks at the transmitter and the
receiver, which are in charge of antennas activation at both
sides, are perfectly informed about the selection.
The proposed selection scheme is compared to other existing
selection criteria, namely capacity and minimum Euclidean
distance of the receive constellation [5] in Fig. 5. We consider
a 5 × 4 MIMO system with QPSK applied at the transmitter.
The selection is applied only at the transmitter side. The se-
lection consists in choosing the 4 best transmit antennas op-
timizing the selection criterion. In Fig. 5, the performance of
4 × 4 quasi-static MIMO channel, are depicted w.r.t the aver-
age transmit SNR, for different selection criteria. It is noticed
that our proposed criterion minimizes the PER for all SNR
range. For PER = 10−4, the minimum Euclidean distance
criterion presents a loss of about 0.5dB from our scheme,
whereas a loss of 1.22dB is observed with the capacity cri-
terion.

6. CONCLUSION

A new approximation for the conditional error probability
on quasi-static multiple antenna channels has been described.
For a fixed channel matrix H, it is possible to predict the per-
formance of QAM modulations transmitted over the MIMO
channel in presence of an AWGN. The approximation is based
on a tight union bound for the point error probability in the
n-dimensional real space. As applications, we described an
adaptive QAM modulation scheme for quasi-static MIMO chan-
nels and a new antenna selection criterion.
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