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ABSTRACT 

The use of multiple antennas at both ends of a wireless link has 
been shown to provide significant improvements in terms of 
outage capacity and average probability of error as compared to 
systems that employ a single sensor transceiver. However, this 
improvement in system performance comes at the price of 
increased hardware cost and computational complexity. 
Transmitting and receiving over a subset of the available 
antennas, referred to as antenna selection, offers a solution by 
reducing the complexity of the system and cutting down on cost 
while still harnessing the advantages of a wireless multiple input 
multiple output (MIMO) system. In this paper, we propose a 
simple and efficient antenna selection algorithm based on the 
computation of a metric which depends on the correlation 
between antennas. We show analytically that our algorithm 
achieves almost the same outage capacity and bit error rate as the 
optimal selection technique while having lower computational 
complexity. We also validate our results through extensive 
simulations. 

1. INTRODUCTION 

Driven by the demand for increasingly sophisticated 
communication services available anytime, anywhere, wireless 
communications has emerged as one of the largest and most 
rapidly growing sectors of the global telecommunications 
industry. The increasing requirements on data rate and quality of 
service for wireless communication systems call for new 
techniques to increase spectrum efficiency and improve link 
reliability. One of the most significant technological 
developments of the last decade, that promises to play a key role 
in realizing this tremendous growth, is the use of multiple input 
multiple output (MIMO) antenna architectures. 

The use of multiple antennas at both ends of a wireless link 
promises significant improvements in terms of spectral efficiency 
and link reliability. Analytical as well as simulation studies have 
verified that MIMO systems can increase the data rate by 
transmitting different data streams from different antenna 
elements (spatial multiplexing) or improve the quality of a single 
data stream by exploiting transmit and/or receive diversity [1]-
[3]. In either case, a major drawback is the requirement for 
multiple RF chains (one for each antenna element), which leads 
to high implementation costs. For this reason, recent papers [4], 
[5], have proposed antenna selection schemes that choose a  

subset of available transmit and/or receive antennas, and process 
the signals associated with these antennas. Optimal selection of 
antenna elements requires an exhaustive search of all possible 
combinations for the one that gives the best SNR (for diversity) or 
capacity (for spatial multiplexing). However, for joint transmit 
and receive antenna selection, this requires a singular value 
decomposition (SVD) operation for each combination of 
antennas at the transmitter and receiver. The computation of this 
many singular value decompositions is computationally 
demanding, when the number of antennas is large.  

We propose a simple and efficient antenna selection algorithm 
based on the correlation between antennas, which performs as 
well as the optimal selection. In section 2, the MIMO system 
model is formulated. A brief overview of existing antenna 
selection schemes is presented in section 3. In section 4, we 
present and analyze the new selection algorithm. Simulation plots 
validating our results are presented in section 5. We conclude 
with a summary of results in section 6. 

2. SYSTEM MODEL DESCRIPTION 

We consider a single user, point to point, flat fading wireless link 
with Nt transmit and Nr receive antennas. The channel is 
described by H, the Nr x Nt matrix of complex fading 
coefficients, which are assumed to be stationary and ergodic. 
These fading coefficients are assumed to be constant over the 
duration of several bursts. We adopt the widely used channel 
model described in  [6],[7] 

                                    1/21/2WTRH ==== ,                                   (1)

where W is a matrix with i.i.d complex Gaussian entries ~N (0,1), 
and R and T are Nr x Nr  and Nt x Nt matrices denoting receive 
and transmit correlation matrices, respectively. This gives rise to 
the Rayleigh fading channel model, which has been used 
extensively to model terrestrial wireless communication channels 
without a direct line-of-sight path [8]. Here we have assumed 
independent transmit and receive correlations. The discrete-time 
received signal in such a system can be written in matrix form as 
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where y(i) is the complex Nr-dimensional vector representing the 
received signals at the receive antenna array at symbol time i, x(i)
is the complex Nt-dimensional vector of transmit signals and n(i)
is the Nr-dimensional, complex vector of receiver noise. The 
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components of n(i) are zero mean, circularly symmetric, complex 
Gaussian with independent real and imaginary parts having equal 
variance. We assume that n(i) is a sequence of uncorrelated 
random vectors and thus, E{n(i)n(i)H} = N0INr, where INr denotes 
the Nr x Nr identity matrix and N0 is the noise variance.  

3. MIMO SYSTEMS WITH ANTENNA SELECTION 

It is possible to select a subset of Lr (Lt) receive (transmit) 
antennas, out of the possible Nr (Nt) antennas, in order to reduce 
the hardware implementation cost without compromising on 
system performance. Without loss of generality, we assume that 
antenna selection is performed only at the receiver. Here, we 
have assumed perfect channel state information (CSI) at the 
receiver. One way to perform channel estimation at the receiver 
is to use a training preamble. But, the only way for the transmitter 
to have CSI is through a feedback channel from the receiver, 
which results in significant overhead.   

Consider the channel matrix H introduced in section 2. The 
singular value decomposition of H can be written as 

                               VUDH ′′′′==== ,                                        (3) 

where U and V are unitary matrices and D is a real diagonal 
matrix. V′′′′ denotes the transpose conjugate of V. The SVD 
operation decomposes the channel matrix H into a number of 
independent orthogonal modes, which are referred to as the eigen 
modes of the channel. The MIMO channel is effectively 
decoupled into parallel single-input, single-output (SISO) 
channels with unequal gain. The selection criterion selects the 
“best” L active eigen modes for transmission and reception. 
However, such systems require knowledge of the CSI at the 
transmitter and receiver. 

3.1 Condition for Optimizing Data Rate 

The ergodic capacity of flat fading MIMO channel is given by [2]  
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subject to a constant total transmitted power of N0, where N0 is
the noise variance. ρ is the nominal signal to noise ratio. 

Decomposing H using SVD and assuming large SNR, the above 
expression can be equivalently written as 
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where iλ is the i-th singular value of H, and the expectation is 

over the independent channel realizations. Thus, the ergodic 
capacity of a wireless MIMO channel is the sum of capacities of 

Nr virtual SISO channels defined by the spatial eigenmodes of the 
matrix product HH′′′′ (Nr ≥ Nt).
Clearly from (6) for maximal capacity, the product of the 
eigenvalues of the matrix HH′′′′ has to be a maximum, i.e. the 
singular values should all be large and almost equal because the 
product is maximum when the multiplicands are large and almost 
the same. 

3.2 Condition for Optimizing Bit Error Rate 

For optimizing BER, we need to maximize the received SNR.
Assuming CSI at the transmitter, the optimum BER can be 
achieved by maximum ratio transmission (MRT) and maximum 
ratio reception (MRC), i.e., U and V are the singular vectors 
corresponding to the largest singular value of H. The effective 

SNR is then given by ρλ1 [7], where 1λ is the largest singular 

value of H.  When there is no CSI, using diversity at the 
transmitter requires that one of the singular values of H be large. 
For our simulations we assume QPSK modulation and the bit 
error rate is given by 
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where Es = 2Eb is the symbol energy, Eb is the energy per bit and 
Q(.) is the well known Q-function.   

3.3  Optimum Selection Criterion  

The optimum criterion for receiver antennas selection, in terms of 
capacity, is to choose the subset of antennas, which maximizes 
the capacity of the resulting sub-channel Hs. This selection 

criterion requires the computation of the capacities of all 

rL
rN

possible subsets of selected antennas and thus becomes 
prohibitively complex for a large number of antennas. For the 
diversity case, we need to compute the SNR of all possible 
combinations before selection. Optimum selection provides an 
upper bound on the performance of more practical selection 
schemes. 

3.4 Maximum Frobenius Norm Criterion  

In case of joint transmit and receive antenna selection, this 
algorithm involves selecting the columns of H with Lt highest 
Frobenius norms and forming the matrix Hst. Then the rows of 
Hst with Lr highest Frobenius norms are selected to form the 
matrix Hs. For receive side selection (Nt = Lt) the algorithm 
selects Lr out of Nr rows with the highest Frobenius norm [4]. 
The drawback of this algorithm is that it may produce sub-
optimum data rates in correlated channels. 

4. PROPOSED ALGORITHM 

Consider the case of a complex, flat-fading channel with the 
receiver having perfect knowledge of the channel state. Assume 
that 2 antennas are being selected at the receiver from Nr receiver 
antennas. Also, for each possible pair of receiving antennas, 
define the sub-matrix product as 
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where R = HHH   and i is the row number and j the column 
number for that pair. If 1 and 2 are the two eigenvalues of the 

Hermitian product HHH , then we can write the characteristic 
equation as: 
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As discussed in section 3.1, the condition for maximizing 

capacity is to maximize the product of the eigenvalues of HHH .
Towards this goal, we propose to select antennas using the 
following metric which is a direct result from (10),       

         
2
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R(i,i) and R(j,j) are the auto-correlation terms denoting signal 
power and R(i,j) is the cross-correlation term as defined in (8). 
By selecting antenna pairs having largest γc, we ensure large 
signal power as well as almost equal distribution of power 
between modes. 

For achieving optimum bit error rates, we need to maximize the 
received SNR. As discussed in section 3.2, the received SNR
would be maximized when one of the eigenvalues of HHH is 
large. Using (9) and (10), we can write 
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Adding (9) and (12) we get 
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Assuming equal power distribution between the two modes of 
excitation as would be expected in the case of an uninformed 
transmitter, (13) reduces to 

[ ]),(2),(),(
2

1
1 jiRjjRiiR ++≈λ                           (14) 

 Thus, we define our metric as  

                ),R(),R(),R(),(B jijjiiji 2++++++++====γγγγ .               (15) 

We pick the antenna pair with largest γB, ensuring large signal 
power. This criterion not only takes into account the power at 

each receiving antenna, but it also accounts for correlation 
between antennas, which will result in greater distribution of 
power to the largest eigenmode. 

5. SIMULATION RESULTS 

We study antenna selection at the receiver only. We compare the 
performance of the proposed algorithm with that of a system 
employing no antenna selection, i.e. system, which uses all its 
receiving antennas and is referred to as the full complexity 
system, and the optimal antenna selection technique, which uses 
the optimal singular values. We also evaluate the performance of 
the proposed metric in terms of accuracy and robustness to errors 
in channel estimation. All simulated points are obtained by 
averaging over 1000 independent channel realizations. We 
present BER plots as a function of increasing SNR and also plot 
capacity with 10% outage probability versus SNR for different 
channel characteristics. We notice that the proposed algorithm 
performs almost as well as the optimum selection, for all channel 
conditions. 

5.1 Data Rate vs. SNR

Figures 1 shows the 10% outage capacity plotted against SNR for 
Lr=2 and Nr=4. We note that our metric performs as well as the 
optimum selection criterion and better than the Maximum 
Frobenius Norm Criterion, for all SNR values in uncorrelated 
channels. The outage capacity of these selection techniques is 
clearly less than that of the full complexity system utilizing all 4 
antennas, as expected.   
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Figure 1 – 10% Outage capacity in bps/Hz versus SNR in dB for 

tN  = 2, rN  = 4 and rL  = 2 for uncorrelated channels.

5.2 Bit Error Rate vs. SNR

We plot bit error rate against increasing SNR for uncorrelated 
channel conditions in figure 2. Our metric performs as well as the 
optimum selection criterion for both correlated and uncorrelated 
channels (plot shown for uncorrelated channel only). It also 
performs better than the Maximum Frobenius Norm criterion for 
both cases. The BER from our metric at high SNR values is 
significantly better than that of the latter criterion.  

5.3 Performance Metrics 

Accuracy - Figure 3 shows a scatter plot of the outage capacity 
of the system selected using our metric plotted against the outage 
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capacity of the optimum selection method for a correlated 
channel. It also shows the outage capacity of system selected 
using the Maximum Frobenius Norm criterion. Figure 3 shows 
almost 100% agreement between the system selected by our 
metric and that selected by the optimum selection criterion. The 
Maximum Frobenius Norm criterion appears to select pairs of 
antennas different from the optimum pair most of the time.   

Figure 4 shows the scatter plot of BER from both metrics plotted 
against the BER of the optimum selection criterion. Again our 
metric selects the optimum pair of antennas almost 100% of the 
time, while the Maximum Frobenius Norm criterion fails to select 
the optimum pair most of the time. 

-20 -15 -10 -5 0 5 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

SNR dB

B
E

R

Full Complexity
Frobenius Norm Criterion
Proposed Selection
Optimum Selection

Figure 2 – BER versus SNR in dB for tN  = 2, rN = 4 and rL = 2 

for uncorrelated channels. 

Robustness – We investigated the effect of channel estimation 
errors on the performance of the proposed selection metric and 
the Frobenius norm criterion. The BER and outage capacity were 
plotted against SNR for the cases when the channel is assumed to 
be perfectly known as well as when there is a 20% error in 
channel estimation. We observed that the proposed selection 
scheme showed better robustness to errors in channel estimation 
than the Frobenius norm criterion both in terms of BER and 
outage capacity. Due to space constraints the plots have not been 
shown here.  
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Figure 3 – Scatter plot of outage capacity for proposed scheme 
and Frobenius Norm criterion. 
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Figure 4 – Scatter plot of BER for proposed scheme and 
Frobenius Norm criterion. 

6. CONCLUSIONS AND COMMENTS 

We have shown that our algorithm performs as well as the 
optimum selection scheme albeit at a much lower computational 
complexity. We have also shown that our metrics for data rate 
and BER both perform better than the Maximum Frobenius Norm 
criterion. The performance enhancement is most significant at 
high SNR values. 

We model the MIMO channel as i.i.d. This assumption is 
reasonable for an indoor environment, where the number of 
scatterers is large in the vicinity of the array and the antennas are 
separated by at least half a wavelength. However, the antenna 
separation requirement does place a limit on the size of the array 
especially for indoor applications. 
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