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ABSTRACT

Iterative multi-user detection and time-variant channel estimation in
a multi-carrier (MC) code division multiple access (CDMA) up-
link requires high computational complexity. This is mainly due
to the linear minimum mean square error (LMMSE) filters that are
used for multi-user detection and time-variant channel estimation.
Krylov subspace methods allow for an efficient implementation of
the LMMSE filter. We show that a suitable chosen starting value, ex-
ploiting the iterative receiver structure, allows for a further speedup
of the Krylov method. We achieve a complexity reduction by more
than one order of magnitude. The Krylov subspace method allows a
parallelization of the computations of the multi-user detector, while
keeping the receiver performance constant. Numerical simulation
results for a fully loaded system with K = 64 users are presented.

1. INTRODUCTION

The Krylov subspace method allows to trade efficiency for accuracy
due to a stepwise approximation of the LMMSE filter output. We
use the Krylov subspace method for complexity reduction of an it-
erative receiver with parallel interference cancelation (PIC) in [1].
The Krylov subspace method converges towards the LMMSE per-
formance within as few as four steps for both multi-user detection
and time-variant channel estimation. Due to PIC the computational
complexity of the multi-user detector remains similar to the one us-
ing an LMMSE. In this paper, we make use of the structure of the
iterative receiver to accelerate further the convergence of the Krylov
algorithm and thus reduce the computational complexity.
Our contributions are: (i) Due to the iterative receiver structure
we can use results from the previous iteration as a starting point in
the next iteration. Such a tight integration of the Krylov subspace
method in an iterative multi-user detector allows substantial com-
plexity savings. (ii) We analyze the convergence properties of the
Krylov subspace method in an iterative receiver structure by using
properties of random matrices.
The paper is organized as follow: The system model and the multi-
user detection is described in Section 2. We briefly review the Krylov
methods in Section 3. Different initialization possibilities for the
Krylov method are described in Section 3.1. The convergence speed
of the Krylov subspace method is analyzed in Section 3.2. We com-
pare the computational complexity of the different methods in Sec-
tion 3.2. Simulation results are presented in Section 4 and conclu-
sions are drawn in Section 5.
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Wiener Wissenschafts- Forschungs- und Technologiefonds (WWTF) in the
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2. ITERATIVE MULTI-USER DETECTOR

The MC-CDMA uplink transmission [2] is based on orthogonal fre-
quency division multiplexing (OFDM). A data block consists of M−
J OFDM data symbols and J OFDM pilot symbols. We consider a
system with K users. User k transmits symbols bk[m] with sym-
bol rate 1/TS, where m denotes discrete time. Each symbol is
spread by a random spreading sequence1 sk ∈ C

N with indepen-
dent identically distributed (i.i.d.) elements chosen from the set
{±1 ± j}/√2N .

The M − J data symbols are distributed over a block of length
M fulfilling bk[m] ∈ {±1 ± j}/√2 for m /∈ P and bk[m] = 0
for m ∈ P , where P = {�M/J(i + 1/2)� | i = 0, . . . , J − 1}
defines the pilot symbol positions. After spreading, J pilot sym-
bols pk[m] ∈ C

N are added dk[m] = skbk[m] + pk[m]. The
elements pk[m, q], q ∈ {0, . . . , N − 1}, of pk[m] are randomly
chosen from the QPSK symbol set {±1 ± j}/√2N for m ∈ P .
Otherwise pk[m] = 0N .

Then, an N point inverse discrete Fourier transform (DFT) is
performed and a cyclic prefix of length G is inserted. A single
OFDM symbol together with the cyclic prefix has length P = N+G
chips. After parallel to serial conversion the chip stream with chip
rate 1/TC = P/TS is transmitted over a time-variant multipath fad-
ing channel with L resolvable paths.

At the receive antenna the signals of all K users add up. The
receiver removes the cyclic prefix and performs a DFT. The received
signal vector after these two operations is given by [2]

y[m] =
K�

k=1

diag (gk[m]) (skbk[m] + pk[m]) + z[m] , (1)

where complex additive white Gaussian noise with zero mean and
covariance σ2

zIN is denoted by z[m] ∈ C
N with elements z[m, q]

and gk[m] ∈ C
N denotes the time-variant frequency response. Fig.

1 shows the structure of the iterative receiver [2].
In this paper we focus on the multi-user detector. The time-

variant channel estimator using prolate spheroidal sequences [2, 6]
and its low complexity implementation using the Krylov subspace
method can be found in [1]. We define the time-variant channel esti-
mate ĝk[m] and the time-variant effective spreading sequence

s̃k[m] = diag (ĝk[m]) sk . (2)

1We denote a column vector by a and its i-th element with a[i]. The
transpose of a matrix A is given by AT and its conjugate transpose by AH.
A diagonal matrix with elements a[i] is written as diag(a) and the Q × Q
identity matrix as IQ. The vector of size Q containing zeros is denoted
0Q. The norm of a is denoted through ‖a‖ and its norm with respect to a
matrix A through ‖a‖A . The largest integer, lower than or equal to b ∈ R is
denoted by �b�. The superscript (i) denotes the i-th iteration of the receiver.

IV  789142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



... ...

...
...

......
... ... ... ... ... ...

...

deinterl.

deinterl.

interl.

interl.

channel
decoder

channel
decoder

mapper

mapper

demapper

demapper

PIC,

KRYLOV
MMSE

estimator

KRYLOV
channel

drop prefix,
FFT

S/P
r[n]

P N

r[m] y[m]

.

.

.

χ̂K [m′′]

APP(ck[m′])

EXT(ck[m′])

w′

1
[m′]

χ̂1[m
′′]

ĝ
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Fig. 1. Model for the MC-CDMA receiver. The MC-CDMA receiver performs joint iterative time-variant channel estimation and multi-user detection.

The corresponding time-variant effective spreading matrix is defined
as S̃[m] = [s̃1[m], . . . , s̃K [m]]. Using these definitions the signal
model for multi-user detection writes y[m] = S̃[m]b[m] + z[m]

for m /∈ P where b[m] = [b1[m], . . . , bK [m]]T ∈ C
K contains the

stacked data symbols for K users.
The receiver detects the data b[m] using the received symbol

vector y[m], the spreading matrix S̃[m], and the soft symbol es-

timates b̃
(i)

k [m] computed from the feedback extrinsic probability
EXT(c

(i)
k [m′]) on the code symbols at iteration (i) with

b̃
(i)

k [m] = 2EXT(c
(i)
k [2m])−1+j(2EXT(c

(i)
k [2m+1])−1) . (3)

In order to cancel the multi-access interference, we perform soft PIC
for user k (iteration(i) and time m are omitted for clarity): ỹk =

y + s̃k b̃k − S̃b̃, and apply unbiased conditional LMMSE filtering:

fk =
(σ2

zIN + S̃V S̃
H
)−1s̃k

s̃H
k (σ2

zIN + S̃V S̃
H
)−1s̃k

. (4)

The matrix V = E{(b − b̃)(b − b̃)H} denotes the error covariance
matrix of the soft symbols, assumed diagonal with elements Vk,k =

E{1 − |b̃k|2}. The estimates wk of the transmitted symbols bk are
then given by wk = fH

k ỹk and decoded by a BCJR decoder.
The matrix inversion in (4) can be efficiently approximated by

the Krylov subspace method. In the next section we give a short
overview on the mathematics involved and we discuss the parameters
that will influence the convergence speed of the Krylov algorithm in
the context of an iterative receiver.

3. KRYLOV SUBSPACE METHOD FOR MULTI-USER
DETECTION

The Krylov method [3] approximates the solution of a linear system
Ax = a where A is a known matrix with size Q × Q and a is a
known vector with size Q × 1. An initial value x0 is projected onto
the Krylov subspace defined by

Ks = span
�
ã, Aã, . . . , As−1

ã
�

(5)

where ã = a−Ax0. The Krylov subspace dimension s is increased
stepwise.

We consider the Ritz-Galerkin approach [4], which requires the
residual vector rs = ã − Axs to be uncorrelated (or orthogonal)
to Ks. An orthonormal basis W s of Ks is computed by applying
the Gram-Schmidt orthonormalization onto the Krylov basis. The
Ritz-Galerkin condition can be written as

W
H
s rs = 0 ⇔ W

H
s ã = W

H
s AW szs , (6)

where xs = W szs. Furthermore, W H
s ã = ||ã||e1, where e1 =

[1, 0, . . . , 0]
T

has length s. The matrix T s = W H
s AW s is tri-

diagonal and the first column of its inverse only is needed to obtain
zs = ||ã||T −1

s e1. Finally, we get xs = x0 + W szs [3, 1].
We apply the Krylov algorithm to approximate the LMMSE fil-

ter (4). Here A and a are defined as A = σ2
zIN + S̃

(i)
V (i)S̃

(i)H

and a = s̃
(i)
k . In other words, we estimate the product

π
(i)
k [m] = (σ2

zIN + S̃
(i)

[m]V (i)[m]S̃
(i)H

[m])−1
s̃
(i)
k [m] (7)

at every iteration (i) for each user k and each symbol m. We know
that the error made at step2 s of the Krylov subspace algorithm is
upper bounded by [5]

‖xs − x‖A ≤ 2‖x0 − x‖A

�√
kA − 1√
kA + 1

�s

, (8)

where the condition number kA = λmax(A)
λmin(A)

> 1 of matrix A is
defined as the ratio of the largest to the smallest eigenvalue. Hence
convergence is assured, but the convergence speed depends strongly
on the spectrum of A and on the choice of the initial value x0.

By using an appropriate initial value x0 the Krylov subspace
algorithm converges faster or in other words we need a smaller sub-
space dimension s to achieve a given mean square error (MSE). Thus
the complexity reported in [1] can be further reduced by a suitable
initialization method which we discuss in the next subsection.

3.1. Initialization methods

We are considering an iterative receiver, hence we can exploit the
information available from the previous iteration. We consider the
following three possibilities for the integration of the Krylov sub-
space method in the iterative multi-user detector:
1. Zeros method: x

(i)
0 [m] = 0N for all iterations (i) and data

symbols m. This is the standard method used in [1].
2. Loop-adaptive method: We use the result from the previous re-
ceiver iteration (i − 1) and define x

(i)
0 [m] = π̃

(i−1)
k [m], where π̃k

is the estimate of (7). For i = 1 x
(1)
0 [m] = 0N .

3. Time-adaptive method: The variation of the channel’s frequency
response gk[m] in time is bandlimited by the maximum Doppler
frequency [6]. This is also true for the effective spreading sequence
(2). Thus we use x

(i)
0 [m] = π̃

(i)
k [m − 1]. The initial value is given

by x
(i)
0 [0] = 0.

2We use the term ’iteration’ (i) for the outer feedback loop from the de-
coder to the PIC and the channel estimator in Fig. 1. The term ’step’ s is
used for the inner loop in the Krylov algorithm for data detection and chan-
nel estimation.
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Fig. 2. Eigenvalue distribution of S̃V (i)S̃
H

for receiver iteration (i) ∈
{1, 2, 3, 4}, averaged over 100 data blocks.

3.2. On the condition number

In this section we consider perfect channel knowledge. Then the ef-
fective spreading matrix S̃ does not depend on the receiver iteration
index (i). Considering the form of A and assuming that the smallest

eigenvalue of S̃V (i)S̃
H

is zero, we obtain kA = 1 + ρ/σ2
z where

the spectral radius ρ = λmax(S̃V (i)S̃
H
). Let us assume that S̃ has

i.i.d. elements with zero mean and variance 1/2N which allows to
utilize the quarter circle-law from random matrices theory [7]. This

law states that the eigenvalue distribution of (S̃S̃
H
)1/2 converges to

a density represented by a quarter circle if N grows to infinity. The
eigenvalues 0 ≤ λ ≤ 1 are distributed as

p(x) =

�
1
π

√
1 − x2 if 0 ≤ x ≤ 1 ,
0 elsewhere .

(9)

We plot the eigenvalue distribution of (S̃V (i)S̃
H
)1/2 for i ∈

{1, . . . , 4} in Fig. 2. For the first iteration V (1) = IN and we
obtain a distribution very similar to the quarter circle with maximum
value ρ ≤ 1. With each iteration (i) of the receiver, the diagonal
covariance matrix V (i) becomes closer to the zero matrix due to
PIC, making the eigenvalue distribution of (S̃V (i)S̃

H
)1/2 moving

as well towards zero. From (8), we can assume that the required
number of steps in the Krylov method will decrease with increasing
iteration number in the receiver. In [8] a polynomial expansion is
considered for reducing the LMMSE filter complexity. However,
no interference cancelation is performed in [8] thus our approach
requires less steps.

The empirical density of the eigenvalue distribution for increas-
ing receiver iteration count is shown in Fig. 2. From this result we
can tell that ρ ≤ 1 and, for the practical implementation, that the
necessary steps of the Krylov algorithm s decreases with increas-
ing iteration count (i). In future work we will analyze an adaptively
chosen Krylov subspace dimension s(i).

3.3. Computational complexity of the Krylov detector

We compare the computational complexity of the LMMSE filter and
the Krylov filter with Zeros, Loop and Time initialization. The sys-
tem is fully loaded, N = K. For the multi-user detector (MUD) and
the time-variant channel estimator (TVCE) the following result were
obtained in [1]:

CMUD
Krylov ≈ K(2SK2 + 7SK) and CMUD

LMMSE ≈ 8
3
K3 ,

CTVCE
Krylov ≈ 2S′KDM and CTVCE

LMMSE ≈ 2
3
(KD + M)(KD)2 ,

where S and S′ is the Krylov subspace dimension for data detection
and channel estimation respectively. The dimension of the Slepian
subspace used for the channel model [2, 6] is denoted by D.

The computational complexity of the Krylov and the LMMSE
multi-user detectors are of the same order. This is due to PIC, since
all users have different filters requiring the same matrix inverse.
However, using the Krylov subspace method allow parallelization
of the computations for the K filters.

The different initialization methods for the multi-user Krylov
filter have the following properties: the Zeros method allows saving
of one matrix-vector product at the initialization (ã = a). The Loop
method has similar computational complexity as the Time method,
but needs to remember the values π̃

(i)
k [m], which means saving a

large matrix of size N × K × M over the whole receiver iteration.

4. SIMULATION RESULTS

We use the simulation setup from [2]. The realizations of the time-
variant frequency-selective channel h′

k[n, �], sampled at the chip rate
1/TC, are generated using an exponentially decaying power delay
profile with root mean square delay spread TD = 4TC = 1µs for a
chip rate of 1/TC = 3.84·106 s−1 [9]. The autocorrelation for every
channel tap is given by the classical Jakes spectrum. The system
operates at carrier frequency fC = 2 GHz and K = 64 users move
with velocity v = 70kmh−1. The number of subcarriers N = 64
(the system is fully loaded) and the OFDM symbol with cyclic prefix
has length P = G + N = 79. The data block consists of M = 256
OFDM symbols with J = 60 OFDM pilot symbols. The system is
designed for vmax = 102.5 kmh−1 which results in D = 3 for the
Slepian basis expansion. The Doppler bandwidth BD = 190Hz and
νD = 3.9 · 10−3.

For data transmission, a convolutional, non-systematic, non-re-
cursive, 4 state, rate RC = 1/2 code with generator polynomial
(5, 7)8 is used. The illustrated results are obtained by averaging over
100 independent channel realizations. The QPSK symbol energy is
normalized to 1 and we define Eb/N0 = 1

2RCσ2
z

P
N

M
M−J

taking into
account the loss due to coding, pilots and cyclic prefix. The noise
variance is assumed to be known at the receiver.

First we show the

MSE[m] = ||π(i)
k [m] − π̃

(i)
k [m]||2 (10)

resulting from the approximation of the filter (7) by the Krylov filter
with Zeros, Loop and Time initialization. Fig. 3 plots MSE[m]
over discrete time m, for the receiver iteration (i) ∈ {1 . . . , 4} us-
ing a Krylov subspace dimension S = 3. At the first iteration of
the receiver, the Zeros and Loop initialization are equal, both being
initialized with 0N . With consecutive receiver iterations the MSE
of the Time and Zeros method becomes slightly larger. The MSE
using the Loop model decreases monotonically with each receiver
iteration. The Loop method is the only one directly benefiting from
the precious receiver iteration: at every iteration, π̃k[m] becomes
more accurate and thus the initial value x0 becomes closer to the
exact value x = πk[m].

Fig. 4 shows the BER using LMMSE and the three Krylov meth-
ods for multi-user detection (MUD), with perfect channel knowl-
edge. We reach the LMMSE performance with the Time method
after the first Krylov step. The Loop method allows a considerable
gain over the Zeros method, but does not perform as well as the
Time method. The Zeros Krylov model reaches the LMMSE per-
formance with a Krylov dimension S = 2.

IV  791



0 10 20 30 40 50

10
−6

10
−5

10
−4

10
−3

m (discrete time)

M
S

E
Zeros 1
Zeros 2
Loop 2
Loop 3
Loop 4
Time 1
Time 2

Fig. 3. MSE[m] (10) for the Krylov approximation of the LMMSE filter.
The Zeros, Loop and Time initialization method are compared for subspace
dimension S = 3, at an Eb/N0 = 10 dB and for receiver iteration (i) ∈
{1, . . . , 4} iterations.

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

TVCEper MUDmmse
TVCEper MUDzeros1
TVCEper MUDzeros2
TVCEper MUDloop1
TVCEper MUDtime1

Fig. 4. Receiver performance in terms of BER versus Eb/N0. We compare
the LMMSE filter and the Krylov filter with Zeros, Loop and Time initial-
ization for multi-user detection (MUD). The Krylov subspace has dimension
S ∈ {1, 2}. The time-variant channel is known perfectly (TVCEper).

In Fig. 5 we show the combined use of different Krylov scenar-
ios for both channel estimation and multi-user detection. To analyze
these results, we need to keep in mind the following facts: (i) One
Krylov step for channel estimation costs less computational com-
plexity than one for multi-user detection. The Loop initialization for
the channel estimation need a storage of D × K only [1]. (ii) The
Loop initialization for the multi-user detector needs saving of a large
matrix. This depreciates this method for a hardware implementation.

Thus the best combination is to use the Loop initialization with
Krylov dimension 4 for the time-variant channel estimator and the
Time initialization with dimension 2 for the multi-user detector. With
this setup we are able to reduce the complexity (channel estima-
tion and multi-user detection) to 6.53% of the complexity using two
LMMSE filters [2].

5. CONCLUSION

We apply the Krylov subspace method for iterative time-variant chan-
nel estimation and multi-user detection for the uplink of an MC-
CDMA system. Exploiting the information that is available from
the previous receiver iteration we can speed up the Krylov subspace
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Fig. 5. Receiver performance in terms of BER versus Eb/N0. We compare
the LMMSE filter and the Krylov filter with Zeros, Loop and Time initial-
ization with dimension S ∈ {1, 2, 3} for multi-user detection (MUD). For
time-variant channel estimation (TVCE) an LMMSE filter and a Krylov filter
with Loop initialization and dimension S′ ∈ {2, 3} is used.

method. Due to the tight integration of the Krylov subspace method
in the iterative receiver structure we are able to reduce the computa-
tional complexity by more than one order of magnitude. Due to the
used Krylov subspace method the computations of the multi-user
detector can be computed in K parallel branches which is highly
beneficial for a low latency hardware implementation.
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