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ABSTRACT
In this paper we present re-enforcement learning algorithms
for adaptive modulation in flat fading channels for reconfig-
urable, agile wireless communications devices. We derive
the dynamical stochastic control model, convexity properties
of the stated optimization problem, learning based feedback
control optimization and numerical simulations of the design-
ed system. We show how this technique can be applied in-
dependently of channel model, error correction coding, and
modulation constellation options. In addition, we demon-
strate the algorithm’s learning and tracking capabilities.

1. INTRODUCTION

In wireless communications systems employing adaptive mod-
ulation, the transmitter is able to vary its transmit power, con-
stellation size, data rate, error coding rate and scheme in re-
sponse to a flat fading channel. Adaptive modulation has been
shown to greatly increase the spectral efficiency of wireless
communications systems compared to fixed schemes [1] and
has been actively researched as a key component in many pro-
posed wireless standards [2].

Research into the design of adaptive modulation systems
has relied primarily on analytical approaches [3] [4] where a
model of the input/output characteristics of the communica-
tion system is derived as a function of the modulation pol-
icy used. In some cases functional approximations are used
where the exact relationship is not convenient for analysis. It
is then possible to find an optimal set of parameters that define
the modulation policy to maximize the spectral efficiency or
overall throughput. Techniques such as Lagrange optimiza-
tion have been used to solve for the modulation policy [3].
This is a powerful approach that finds optimal solutions to a
large class of adaptive modulation systems.

We propose re-enforcement learning based adaptive mod-
ulation techniques. Learning based solutions are ideal for
highly adaptable devices that seek to best use the wireless
channel given limited a priori knowledge of performance mod-
els. The learning based approach is motivated by the fact that,
in certain cases, in may be difficult to define the input/output
characteristics of the system given a broad set of communi-
cations options. Rather than using explicit models, we model

Figure 1: System block diagram

the performance of the system as the output of a ‘grey box’. In
real-time, machine learning algorithms are used to assess the
performance of the current system and iteratively tune com-
munications parameters in order to optimize system perfor-
mance.

2. STOCHASTIC DYNAMICAL MODEL FOR
ADAPTIVE MODULATION

2.1. System Model for Adaptive Modulation with Packe-
tized Transmission

Consider the single-transmit single-receive antenna commu-
nication system with adaptive modulation shown in Figure 1.

At the transmitter, we consider packetized transmission
where the user data vector ak is encoded and modulated us-
ing the modulation and coding scheme ik to produce wave-
form xk at time k. We assume that ak is independent and
identically distributed Bernoulli random vector taking values
in A = {0, 1}L where L is the number of information bits per
packet and p represents the probability of a individual com-
ponent taking value 1. We also define ik ∈ I, where I is
a discrete set of transmission modes. The resulting signal,
xk ∈ X , is transmitted over the channel where X is the set of
all possible modulated waveforms.

We consider a transmission scheme with variable rates
and fixed power, where forward error correction (FEC), Grey
mapping and M-ary Quadrature Amplitude Modulation (M-
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QAM) is employed. Each packet has a fixed number of sym-
bols and the modulation scheme used is fixed within a packet.
We assume that each packet contains cyclic redundancy check
(CRC) information that will allow the receiver to ascertain the
success of transmission.

The channel is modeled as a slowly varying, flat Rayleigh
fading channel with channel gain hk ∈ H and autocorrela-
tion Rh[τ ] = J0(2πfdTsτ) where; fdTs is the normalized
Doppler spread; J0 is the zeroth order Bessel function of the
first kind; and τ is the time offset. The received signal is im-
paired by zero-mean additive white Gaussian noise (AWGN)
wk with variance σ2

w. We approximate the fading coefficient
by a first order Markov chain such that hk = αhk−1 + vk

where vk is zero-mean Gaussian noise with variance σ2
v inde-

pendent of hk−1and |α| < 1 [5]. It should be noted that the
fading realizations were simulated using the modified Jakes
method of [6]. We also consider a block fading model where
the fading remains constant over the packet interval.

The output of the channel in the discrete time baseband
formulation is given by yk = hkxk + wk with yk ∈ Y .

The instantaneous signal to noise ratio (SNR), γk, is

γk =
P̄ |hk|

2

σ2
w

. (1)

where P̄ is the average transmit power.
The receiver outputs the detected data, âk, and calculates

the performance function. The performance function is an
empirically measured quantity that reflects the success of trans-
mission.

To enable adaptive transmission the receiver transmits chan-
nel state information (CSI) to the transmitter in order to select
a new modulation and coding scheme (MCS) via a feedback
path. We assume error free channel estimation and an error
free, instantaneous feedback path.

The MCS used to encode xk, is selected by the modula-
tion policy Qθ, which maps the measured channel quality at
the receiver to a new modulation and coding scheme, ik ∈ I,
at the transmitter. Each ik is associated with a particular rate
rk in bits per symbol.

γ is partitioned into R rate regions, each region is assigned
a rate in increasing order, r0 < r1 < . . . < rR−1. The rate
region thresholds are parameterized by θ ∈ Θ where Θ is the
set {RR−1

+ such that θ1 < θ2 < . . . < θR−1}.
As the system operates, the transmitter is fedback empir-

ical packet error rate information which is used to update Qθ

and drive the system to maximum performance.

2.2. Markovian Dynamical Formulation of Adaptive Mod-
ulation Problem

With the system model in place we turn our attention to the
statistical dynamics of the time evolution of the system. The
overall system dynamics are given by

yk = hkxk + wk; xk = ak � Qθ

[
γk−1

]
(2)

In (2), ‘�’ denotes the error coding and modulation of the
user data. The stochastic process {Zk} defined by

zk =

⎛
⎜⎜⎝

yk

hk

xk

ak

⎞
⎟⎟⎠ (3)

on state space Z = {Y × H × X × A} is Markovian with
transition kernel

pθ(zk|zk−1) =
pL

2πσwσv

exp

(
−

1

2σ2
w

(yk − hkxk)2
)

· exp

(
−

1

2σ2
v

(hk − αhk−1)
2

)

· δ

(
xk − ak � Qθ

[
P̄ |hk−1|

2

σ2
w

])
(4)

In addition, the Markov process {Zk} is positively Harris
recurrent and is geometrically ergodic with invariant distribu-
tion πθ [7]. For further discussion and proof see [8]

In order to conduct statistical inference and stochastic op-
timization of the average behavior of the system we require
the Markov Chain, Zk, to be geometrically ergodic and pos-
sesses a unique invariant distribution πθ.

2.3. Constrained and Unconstrained Performance Met-
rics for Adaptive Modulation

The throughput f is defined as

f(θ) =
R−1∑
i=0

ri

∫ θi+1

θi

(1 − Pe,ri
(γ))p(γ)dγ (5)

where, γ is SNR with distribution p(γ). θ0 = 0, θR = ∞ are
fixed with θi < θi+1 and ri < ri+1 for i = 1, 2 . . . R − 1.
Pe,ri

(γ) represents the packet error rate under transmission
rate ri as a function of received SNR γ.

We also consider maximization of throughput, f , subject
to average packet error rate constraint h given by

s.t. h(θ) =

R−1∑
i=0

∫ θi+1

θi

Pe,ri
(γ)p(γ)dγ < ψ (6)

where ψ is the target packet error rate. In the constrainted
case for R possible rates we require θ ∈ R

R.
Our aim is to compute the optimal threshold vector θ∗ as

a solution to the stochastic optimization problem

maxθ f(θ)
s.t. h(θ) − ψ ≤ 0

(7)
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2.4. Convexity of Throughput and Error Rate Constraint

We begin by making certain assumptions on the structure of
the packet error rate functions, Pe,r(γ).

A1) Pe is an exponentially decreasing function of received
SNR γ

A2) For a given SNR Pe,ri
(γ) < Pe,ri+1

(γ)

A3)
P ′

e,ri+1
(γ)

P ′

e,ri
(γ) < ri

ri+1
where P ′

e,ri
(γ) denotes

∂Pe,ri
(γ)

∂γ
.

Assumption A1 has been studied by [2] as an effective
means for approximating packet error rates as a function of
channel SNR. In addition [3] has similar studies for bit error
rate. Assumption A3 follows from assumptions A1 and A2
and is empirically valid. For example, the approximations to
packet error rate curves used in HIPERLAN/2 system design
exhibit this property [2]. For our purposes the specific nu-
merical approximations to the packet error rate curves are not
required, only that the assumptions outlined hold.

The functions f(θ) and h(θ) defined by (5) and (6) re-
spectively, are convex with respect to θ. For proof refer to
[8].

Let the set K, where

K = {θ∗ ∈ Θ,∃λ∗ ≤ 0,∇θf + λ∗∇θh = 0, λ∗∇θh = 0}
(8)

define the Karush-Kuhn-Tucker points. Assuming f and h are
twice differentiable, the point (θ∗, λ∗) ∈ K is unique. More-
over, θ∗ meets the second order sufficient condition∇2

θf(θ∗)+
λ∗∇2

θh(θ∗) = 0 [9].

3. PRIMAL DUAL STOCHASTIC GRADIENT
APPROXIMATION FOR ADAPTIVE MODULATION

As the system operates the performance is empirically mea-
sured and fed back to the transmitter. Using this informa-
tion, stochastic estimates of the gradient of the cost function
may be computed based on sample path information. In this
section we frame the problem as an iterative stochastic opti-
mization and present stochastic approximation techniques for
sample path gradient estimation.

Let θ̂n, λ̂n, ∇̂fn and ∇̂hn represent estimates of θ, λ, ∇f
and ∇h available at iteration n. The primal dual stochastic
gradient algorithm is

θ̂n+1 = θ̂n + εn[∇̂θfn(θ̂n) + λ̂n∇̂θhn(θ̂n)] (9)

λ̂n+1 = min{λ̂n − εn(hn(θ̂n) − ψ), 0} (10)

where εn is a decreasing step size sequence of the form ε/n,
where ε is a constant greater than zero. For tracking purposes
we may also select a constant step size.

3.1. Gradient Estimation and SPSA Algorithm

Simultaneous Perturbation Stochastic Approximation [10] (SP-
SA) is a technique for gradient approximation. In SPSA an

approximation of ∇θf(θ) can be obtained using only two
measurements of the cost function. The SPSA approach has
all components of the vector θ randomly perturbed simultane-
ously with a random vector ∆. If ∇̂θfn and ∇̂θhn are given
by SPSA estimates, then

(θ̂n, λ̂n) → (θ∗, λ∗) with probability 1 (11)

The constants used in the application of the SPSA algo-
rithm have been selected in accordance with the conditions of
[11]. We assume that f(θ) is thrice differentiable for all val-
ues of θ. Further details about sufficient conditions and proof
of convergence can be found in [10].

Apart from finite difference methods there are 3 other
methods for gradient estimation; pathwise (IPA), score func-
tion and weak derivatives. For a Markovian process, score
function methods have large variance and are not suitable.
The weak derivative approach is a topic of future research.

4. SIMULATION RESULTS

In this section, we present Monte Carlo simulations that were
conducted to test the effectiveness of the stochastic learning
algorithms in the presence of convolutional error correction
coding. In addition, we investigate the tracking capabilities
of the stochastic optimization. Further analysis of uncoded
transmission performance and turbo coded systems is avail-
able in [8].

4.1. Convolutional Coding
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Figure 2: Average throughput versus SNR for fixed and adaptive
modulation policies with convolutional coding in Rayleigh fading

We begin by considering MQAM transmission with con-
volutional error correction coding of constraint length 7, gen-
erator polynomial [133, 171]8. Figure 2 shows the average
throughput performance versus received SNR for unconstrained
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Figure 3: Average throughput versus iteration number of adaptive
modulation learning process under convolutional coding with 10dB
average received SNR

optimization. We see the performance of fixed rate transmis-
sion schemes (dashed lines) as well as the performance of
the adaptive modulation system (solid line). There is strong
adherence to the optimal transmission mode in each rate re-
gion. Figure 3 shows the average throughput performance
where the PER is constrained to be 10 %. Figure 4 shows the
tracking capabilities of the learning algorithm as the PER con-
straint is relaxed. Each iteration corresponds to transmission
of 200 packets.

5. DISCUSSION AND CONCLUSION

In this paper we have designed and tested stochastic learning
algorithms for the design of adaptive modulation systems. We
have presented a detailed system architecture and dynamics
where adaptive learning algorithms can be applied. We have
found the application of stochastic learning techniques can
be used to design flexible and agile adaptive modulation pro-
tocols. For future development more sophisticated gradient
estimation techniques such as measure valued differentiation
can be used to compute consistent estimates of the derivative.
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