
SUBF vs. MUBF in a Gaussian MIMO Broadcast
Channel with Partial Channel State Information

Youngjae Kim and John M. Cioffi
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

Email: {youngjae, cioffi}@stanford.edu

Ravi Narasimhan
Department of Electrical Engineering

University of California.
Santa Cruz, CA 95064

Email: ravi@soe.ucsc.edu

Abstract— In a Gaussian MIMO broadcast channel, serving
more than one user at a time is generally more beneficial in terms
of average sum-rate. Under partial Channel State Information
(CSI) feedback constraints, however, serving only one user at a
time can be a better multiple access method when the number
of active users in the system is smaller than a certain threshold.
This paper uses Single User Beam-forming (SUBF) to refer to
the transmitting scheme that serves only one user at a time and
Multi-user Beam-forming (MUBF) to refer to the scheme without
such a constraint, i.e., a scheme that is allowed to serve more
than one user at a time. It turns out that the aforementioned
user threshold varies with other system parameters, especially, it
increases as the number of transmit antennas increases. Monte
Carlo simulations and a statistical analysis are provided to verify
the results.

I. INTRODUCTION

The use of multiple antennas in transmitters and/or receivers
has been studied considerably. In a general Multi-Input Multi-
Output (MIMO) Broadcast Channel (BC), it has been discov-
ered that the sum capacity can be achieved by Dirty Paper
Coding (DPC) [1], [2]. Although it is optimal in terms of
sum-rate, it is hard to implement and requires perfect CSI at
the transmitter side, which is practically very challenging.

This paper considers MIMO BC with partial CSI feedback
constraints. Partial CSI means any imperfect and un-quantized
feedback information about the channel such as Signal-to-
Interference-and-Noise Ratio (SINR), a power distribution
profile, achievable rates and so on. In terms of feedback
amount, perfect CSI requires 2(MT · MR) real numbers per
channel realization since the channel H is an MR × MT

complex matrix, where MT is the number of transmit antennas
and MR is the number of receive antennas. Thus, partial CSI
feedback information consists of 1 to 2(MT · MR) − 1 real
numbers.

This paper considers three such schemes in MIMO BC.
In two schemes, the transmitter serves only one user at a
time, which is referred to as SUBF [3] in this paper. These
two SUBF schemes are different from each other in terms of
feedback information amount. In the third one, the transmitter
has no such constraint and is allowed to serve more than one
user at a time, which is referred to as MUBF.

In the first SUBF, each receiver estimates its own achievable
rate and feeds it back to the transmitter. Upon receiving all the

achievable rates from the receivers, the transmitter selects the
best receiver and sends data only to that receiver. By doing
this, the transmitter can serve only the best receiver at any
time and ride the peak of the fading channel, which is so-called
multi-user diversity [4]. In addition, the receiver may calculate
the optimal power distribution profile and feeds it back to the
transmitter along with the achievable rate. The second SUBF
scheme does this and is very beneficial in low SNR regions.
In MUBF, the transmitter sends MT orthogonal data streams
(or beams) to all the receivers. Each receiver estimates the
SINR of each stream and sends them back to the transmitter
with the stream indices. Then, the transmitter selects the best
receiver in each stream independently and sends data only
to the selected receivers through the corresponding streams.
Different receivers may be selected in different streams, thus
serving more than one user at a time is possible.

Unless the broadcast channel is degraded, which is true
when MT = 1 [5], the optimal DPC scheme usually serves
more than one user at a time. Thus, it can be easily imagined
that MUBF is better than SUBF when the number of users in
the system is large. When there are a small number of users in
the system, however, this paper demonstrates SUBF is more
beneficial than MUBF in terms of sum-rate. This is true until
the number of users reaches some threshold. This threshold
is related with other system parameters such as MT , MR or
Signal-to-Noise-Ratio (SNR). In particular, it increases as MT

increases. As will be detailed in the paper, the main reason
for this phenomenon is because MUBF should consider other
streams as noise because they are intended for other users. In
SUBF, however, all the streams are intended for one user, thus
each stream can be more efficiently detected by joint signal
processing.

This paper is organized as follows. Section II introduces
the system model considered in the paper, Section III and IV
review three schemes in MIMO BC with partial CSI feedback
constraints, derives the random variable for the sum-rate in
each scheme and compares them and Section V provides the
simulation results. Section VI finds the threshold using an
approximated analysis and Section VII concludes the paper.
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II. SYSTEM MODEL

The Gaussian broadcast system considered in this paper
consists of one Base Station (BS) and U users. The signal
received by the uth user is y

u
(∈ C

MR×1) and is represented
as follows:

y
u

=
√

ρ

MT
Hux + nu, (1)

where Hu(∈ C
MR×MT ) is the channel from the BS to the

uth user, x(∈ C
MT ×1) is the transmitting signal and nu(∈

C
MR×1) is the additive white Gaussian noise. For a rich

scattering environment, each element of Hu is modeled as
an i.i.d. complex Gaussian random variable with zero mean
and unit variance. The channel is assumed to be constant
within one packet time and changes independently in the
next packet time, i.e., block fading model. Without loss of
generality, E[nun∗

u] = I such that ρ is SNR. The BS has
a total transmitting power constraint, Tr(Rxx) ≤ MT , where
Rxx = E[xx∗] and [·]∗ means a conjugate-transpose operation.
Throughout the paper, underlined letters represent vectors,
bold-face letters represent matrices and plain letters represent
scalars.

III. SUBF SCHEMES

Denote the maximum achievable rate of the uth user under
any given constraints as Ru,(·). Ru,MAX−SUBF , for instance,
represents the achievable rate of the uth user in SUBF, i.e.,
one user at a time, when perfect transmitter CSI is available.
Thus, the problem of finding Ru,MAX−SUBF can be cast into
the following optimization form:

Ru,MAX−SUBF = max
Rxx

log2 |IMR
+

ρ

MT
HuRxxH∗

u| (2)

subject to Tr(Rxx) ≤ MT ,Rxx � 0, (3)

where X � 0 means that X is a positive semi-definite matrix.
Since the BS would select the best user in order to maximize
the sum rate at any time, the selected rate for this scheme
would be

RMAX−SUBF = max
u=1,··· ,U

Ru,MAX−SUBF , (4)

which could be considered as the upper bound of any SUBF
schemes that use partial CSI feedback.

Secondly, if any signal coordination among different trans-
mit antennas is not allowed but the power per each antenna can
be optimized, the constraint of Rxx being diagonal is added
to the rate optimization problem. That is,

Ru,SUBF = max
Rxx

log2 |IMR
+

ρ

MT
HuRxxH∗

u| (5)

subject to Tr(Rxx) ≤ MT ,Rxx � 0, (6)

Rxx is diagonal (7)

In [3], it was observed that this problem is equivalent to the
Multiple-Access-Channel (MAC) sum capacity problem with

a sum power constraint MT , which can be efficiently solved
by the dual decomposition approach and Iterative Water-filling
by Yu [6]. After the selection process by the BS, the sum rate
in this case will be

RSUBF = max
u=1,··· ,U

Ru,SUBF . (8)

Finally, if only the achievable rate is fed back, a BS has
no choice but using Rxx = I, then

RSUBF−RateOnly = max
u=1,··· ,U

Ru,SUBF−RateOnly (9)

= max
u=1,··· ,U

log2 |IMR
+

ρ

MT
HuH∗

u|
(10)

In [7], it was discovered that Ru,SUBF−RateOnly can be well
approximated by a Gaussian random variable. In particular,
as MR → ∞, it was shown that

Ru,SUBF−RateOnly ∼ N
(

MT log2(1 +
MR · ρ
MT

),
MT log2

2 e

MR

)

(11)

Although this expression is true only in an asymptotic region,
Gaussian approximation itself still holds very good even
with small MR, which implies that the knowledge of the
mean and variance is sufficient to determine the distribu-
tion of Ru,SUBF−RateOnly. Since RSUBF−RateOnly is the
maximum of i.i.d Gaussian random variables, its Cumula-
tive Distribution Function (CDF) can be approximated by
P (RSUBF−RateOnly ≤ z) = P (Ru,SUBF−RateOnly ≤ z)U .

Table I summarizes the schemes that are introduced in this
paper based on the amount of feedback information. It is
clear that RMAX−SUBF ≥ RSUBF ≥ RSUBF−RateOnly

because of the weaker constraints for RMAX−SUBF compared
to that of RSUBF and so on. In the high SNR regions,
however, it is well known that the power optimization is not
beneficial [8], which leads that RMAX−TDMA ≈ RSUBF ≈
RSUBF−RateOnly. Thus, when ρ is high, it is sufficient to
compare only RSUBF−RateOnly with the MUBF scheme that
will be explained in the next section.

IV. MUBF SCHEME WITH PARTIAL CSI FEEDBACK

After a transmitter sends MT orthogonal beams using
Rxx = I and the receiver performs Minimum-Mean-Squared-
Error Linear-Equalization (MMSE-LE), the unbiased SINR on
the ith stream of the uth user can be expressed as [9]:

SINRi,u =
1[(

IMT
+ ρ

MT
H∗

uHu

)−1
]

i,i

− 1, (12)

where [·]i,i means the ith diagonal element of the matrix.
BS selects the best user in each stream and the sum of

those selected rates is the variable of interest, which can be
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TABLE I

COMPARISON OF THE SCHEMES

CSI Perfect Partial Partial Partial None
(Rate+Power Profile) (each stream’s SINR) (Rate Only) (Round Robin)

Rate RMAX−SUBF , RDPC RSUBF RMUBF RSUBF−RateOnly RRound−Robin

Constraint at Tx. Tr(Rxx) ≤ MT Tr(Rxx) ≤ MT , Rxx = I Rxx = I Rxx = I
Rxx diagonal

CSI amount 2(MT · MR) MT +1 MT 1 0
(Number of real numbers)

Multi-user Diversity Yes Yes Yes Yes No

represented as:

RMUBF =
MT∑
i=1

RMUBF,i =
MT∑
i=1

(
max

u=1,··· ,U
log2(1 + SINRi,u)

)

(13)

=
MT∑
i=1

(
log2(1 + max

u=1,··· ,U
SINRi,u)

)
(14)

(14) holds because log2(1 + x) is a monotonically increasing
function. This scheme is called Multi-User Beam-forming
(MUBF) compared to SUBF in this paper.

Interestingly, even without receiver coordination, the asymp-
totic growth rate of E[RMUBF ] as U increases turns out to
be equal to that of E[RDPC ] [10], where RDPC denotes
the achievable rate by DPC and E[·] here means averaging
the variable over all the channel realizations, i.e., an ergodic
mean. This fact strongly manifests the importance of partial
CSI feedback. However, note that this is an asymptotic re-
sult and there always exists a gap between E[RDPC ] and
E[RMUBF ]. This is why SUBF can be better than MUBF
in the system with a small U . Furthermore, from Table I,
note that RSUBF−RateOnly uses even less amount of feedback
information than RMUBF but can outperform RMUBF in
some situations.

In a high SNR regime, Zero-Forcing (ZF)-LE performs
almost as well as MMSE-LE, so SINRi,u can be well approx-
imated by SINRi,u ≈ SINRZF,i,u = 1[(

ρ
MT

H∗
uHu

)−1
]

i,i

. It

is known that SINRZF,i,u is a chi-squared random variable
with 2(MR + MT − 1) degrees of freedom [9]. Thus, when
ρ is high, the CDF of RMUBF,i can be found numerically by
using the cdf of a chi-squared distribution.

V. NUMERICAL RESULTS

Fig. 1 illustrates the ergodic sum rates along with U as both
MT and MR increase from 2 to 4 when ρ = 20(dB). Here, U
means the number of users who simultaneously request data
transmission from BS at a specific time. In all the simulations,
a capacity achieving Gaussian code is assumed to be used.
First, note that since this is in a high SNR regime, the plot of
E[RMAX−SUBF ] is almost identical to E[RSUBF−RateOnly].
Second, the multi-user diversity effect can be observed, i.e.,
the rates increase as U increases. Since SUBF is optimized to
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Fig. 1. Ergodic sum rates with partial CSI (ρ = 20dB).
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Fig. 2. Ergodic sum rates with partial CSI (ρ = 0dB).

serve only one user under given constraints, SUBF is clearly
better than MUBF when U = 1. In more detail, all the streams
in SUBF are intended for one user. Thus, the receiving user
can use a Successive-Interference-Cancelation (SIC) technique
that is exactly what the common receiver in a MAC would
do for multi-user detection. On the other hand, MUBF just
uses MMLE-LE decoding. This is the main reason that SUBF
is better than MUBF when U = 1. In addition, the growth
rate of E[RMUBF ] is higher than that of E[RSUBF−RateOnly],
thus there always exists a cross-over point where two curves
meet. This cross-over point is a threshold under which SUBF
is better than MUBF. Third, note that this threshold increases
as MT and MR increase. This is because the performance of
MUBF is limited by interferences among different data streams
but SUBF can cancel out these interferences by joint signal
processing at the receiver as explained above. From the plot,
it can be observed that these thresholds are U = 6, 9, 16, when
MT = MR =2,3,4, respectively. In an actual BS, there are 30
users associated with it. Therefore, it is possible that fewer
than 10 users request data transmission at the same time. In
such cases, SUBF might be a better method than MUBF with
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Fig. 3. Ergodic sum rates when MT > MR (ρ = 20dB).
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partial CSI feedback.
On the other hand, Fig. 2 shows the same results in a low

SNR region. Note that the gap between the E[RMAX−SUBF ]
and E[RSUBF−RateOnly] is now very large and the power
optimization at the transmitter gives RSUBF a noticeable gain
over RSUBF−RateOnly. Interestingly, in the low SNR region,
the threshold does not change much as the number of antennas
increases.

When MT > MR and ρ is high, MUBF is further limited
by the stream interferences. When MT = 4 and MR = 1, for
example, the threshold becomes even higher, which is about
U = 39 in Fig. 3. Since MUBF is meaningful only when
MT ≤ (U ·MR), this simulation is performed starting U = 4.

VI. CROSS-OVER POINT APPROXIMATION

The exact analytic expression for the cross-over point
is very difficult to find. This section uses the Gaussian
approximation of Section III for RSUBF−RateOnly and ZF
approximation of Section IV for RMUBF in order to find the
cross-over point.

Only the case of MT = MR is considered in this section.
Although (11) gives the variance of log2

2 e when MT = MR,
a heuristic adjustment is needed for small MR, which leads
to a variance of 0.85 × log2

2 e that fits the Monte Carlo
simulation best. Meanwhile, the mean of Ru,SUBF−RateOnly

is empirically computed.
Fig. 4 illustrates the CDF of RSUBF−RateOnly

and RMUBF,i as U varies. Using these CDFs,
E[RSUBF−RateOnly] and E[RMUBF,i] can be numerically
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calculated. The symmetric distribution of Hu makes the
average rate of every post-equalized stream equal, which
makes E[RMUBF ] = MT · E[RMUBF,i].

Fig. 5 illustrates the plots obtained using these approxima-
tions. Note that they resemble the Monte Carlo simulation
results in Fig. 1 very well.

VII. CONCLUSION

This paper considers transmitting schemes in MIMO BC
with partial CSI feedback constraints. MUBF serves more than
one user at a time and asymptotically performs equally with
the sum capacity achieving scheme, i.e., DPC. However, it suf-
fers from SINR loss due to interferences among data streams.
More streams and high SNR make these interferences even
higher and make MUBF unfavorable. MUBF also requires
synchronization among the active users, which is challenging
in practice. Instead, SUBF serves only one user at a time and
outperforms MUBF in terms of sum-rate for the number of
active users less than a certain threshold.
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