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ABSTRACT

This paper aims to relax the restrictive conditions on blind MIMO
channel identification by exploiting structured transmitter design.
First, a simple structured transmit delay scheme is proposed, in which
each antenna transmits an independent zero-padded data stream. Sec-
ondly, a second-order statistics based blind channel estimation algo-
rithm is developed. Simulation results demonstrate that the proposed
approach is robust in MIMO environment, even if when there are
common zeros among the sub-channels.

1. INTRODUCTION

Due to the promised spectral efficiency, blind signal detection has at-
tracted more and more research attention in recent years, especially
in MIMO systems. It has been well understood that in SIMO sys-
tems, blind channel identification based on second order statistics
generally requires that all SIMO sub-channels share no common ze-
ros [1]. For MIMO systems, the existing direct blind identification
algorithms generally require the matrix transfer function to be irre-
ducible and column reduced, see [2–4] for example.

However, these restrictive conditions could be relaxed for MIMO
systems by exploiting space-time diversity at the transmitter end.
The approach in [5] guarantees channel identifiability without re-
strictions on channel zero locations, however, the data rate of the
whole system is drastically decreased due to the Alamouti’s block
codes applied on each subcarrier in space time OFDM transmissions.
Similarly, in [6], with reduced data rate, blind channel identification
is achieved by exploiting the time reversed technique.

In this paper, we aim to relax the conditions on blind MIMO
channel identification while achieving a higher data rate. First, a
simple transmit delay scheme is proposed to exploit the guard in-
tervals for blind channel estimation. Unlike existing transmit diver-
sity schemes [5–8], in which different antennas transmit the delayed,
zero-padded, or time reversed versions of the same signal, the pro-
posed transmit delay scheme promises higher data rate since each
antenna transmits an independent data stream. Secondly, a second-
order statistics based blind channel estimation algorithm is devel-
oped. The proposed approach involves no pre-equalization and has
no limitations on channel zero locations. The size of data block can
be chosen large enough to make the data rate arbitrarily close to the
maximum transmission rate.

The rest of this paper is organized as follows. The structured
transmit delay scheme is proposed in Section 2. In Section 3, the
blind channel estimation algorithm is developed. In Section 4, struc-
tured transmit delay scheme and blind channel estimation algorithm
are extended to general MIMO systems. Simulation results are pro-
vided in Section 5 and we conclude in Section 6.

S/P

Channel h1

Channel h2

Channel hNt

Input
Symbols

w

z

s1 Structured Zero
Padding & Delay

s1

s2 Structured Zero
Padding & Delay

s2

sNt Structured Zero
Padding & Delay

sNt

Fig. 1. A structured transmit delay scheme for MIMO systems.

2. THE PROPOSED TRANSMIT DELAY SCHEME

The block diagram of the proposed transmit delay scheme is illus-
trated in Fig. 1. Take the 2 × 2 MIMO system as an example. The
input symbols are first split by a serial-to-parallel converter (S/P)
into parallel data streams. Each data stream is then packed into N -
symbol blocks. Denote the lth block from the 1st antenna and the
2nd antenna by s1(l) = [s1(lN), s1(lN+1), · · · , s1(lN+N−1)]T

and s2(l) = [s2(lN), s2(lN + 1), · · · , s2(lN + N − 1)]T , respec-
tively. Assume that there are 2K blocks in a frame. Zero-padding is
performed according to the following structure:
when l ∈ [1, K],

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s̄1(l)
∆
= [s1(lN), · · · , s1(lN + N − 1), 0, · · · , 0︸ ︷︷ ︸

L+1

]T

s̄2(l)
∆
= [0, s2(lN), · · · , s2(lN + N − 1), 0, · · · , 0︸ ︷︷ ︸

L

]T

when l ∈ [K + 1, 2K],

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s̄1(l)
∆
= [0, s1(lN), · · · , s1(lN + N − 1), 0, · · · , 0︸ ︷︷ ︸

L

]T

s̄2(l)
∆
= [s2(lN), · · · , s2(lN + N − 1), 0, · · · , 0︸ ︷︷ ︸

L+1

]T ,

where L is the maximal channel order among all of sub-channels in
the system. After zero-padding, the size of each extended block is

P
∆
= N + L + 1.

Let rj(l) = [rj(lP ), · · · , rj(lP + P − 1)] be the lth received
block at the jth receive antenna. For n = 0, · · · , P − 1,

rj(lP +n) =
2∑

i=1

L∑
m=0

hji(m)s̄i(lP +n−m)+wj(lP +n), (1)
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where hji
∆
= [hji(0), hji(1), · · · , hji(L)]T denotes the channel im-

pulse response between the ith transmit antenna and the jth receive

antenna, and wj(l)
∆
= [wj(lP ), · · · , wj(lP + P − 1)]T is the addi-

tive noise sequence.
Our discussion in the following sections is based on the follow-

ing assumptions:

(A1) The input information sequence is zero mean, mutually inde-
pendent and i.i.d.. This implies that E{si(lN + m)sj(kN +
n)} = σ2

sδi−jδl−kδm−n, where σ2
s is the signal power.

(A2) The noise is additive white Gaussian, independent of the in-
formation sequence, with variance σ2

w.

(A3) There are 2K blocks in a data frame and the channel is time-
invariant within each frame.

(A4) All the transmit antennas of a single user are synchronized.

3. SUBSPACE-BASED BLIND CHANNEL ESTIMATION

3.1. Without Prior Channel Order Information

Stack the lth block received from each of the two antennas into a
2P × 1 vector z(l). First consider {z(l)}K

l=1, we have,

z(l) =

⎡
⎢⎣

H11 01×N

01×N H12

H21 01×N

01×N H22

⎤
⎥⎦

︸ ︷︷ ︸
∆
=H

[
s1(l)
s2(l)

]
︸ ︷︷ ︸

∆
=x(l)

+

[
w1(l)
w2(l)

]
. (2)

where

Hji
∆
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hji(0) 0 · · · 0

hji(1) hji(0)
. . .

...
... hji(1)

. . . 0

hji(L)
. . .

. . . hji(0)

0 hji(L)
. . . hji(1)

...
. . .

. . .
...

0 0 · · · hji(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(P−1)×N

(3)

The correlation matrix of z(l) is

Rz = E{z(l)z(l)H} = σ2
sHHH + σ2

wI2P . (4)

In the absence of noise, the eigendecomposition of Rz can be repre-
sented as

Rz =
[

U Ũ
] [ ∑

0
0 0

] [
UH

Ũ
H

]
, (5)

where
∑

is a diagonal matrix of size 2N × 2N with nonzero diag-
onal entries, and Ũ is a 2P × (2P − 2N) matrix, whose columns
span the null space N (Rz). Write Ũ = [ũ1, · · · , ũ2P−2N ]. Because
N (Rz) is orthogonal to the range space R(H), it follows that

ũH
k H = 01×2N , ∀k ∈ [1, 2P − 2N ]. (6)

Let h̃1
∆
= H(:, 1) and h̃2

∆
= H(:, N + 1). And

H̃µ
∆
= Vh̃µ, u = 1, 2, (7)

where V denotes a 2P × 2P Vandermonde matrix with the (m +

1, n + 1)st entry e(−j π
P

mn).
Note that H can be factorized as

H = [FH
2P D1F2P Θ FH

2P D2F2P Θ], (8)

where Dµ
∆
= diag(H̃µ), F2P denotes a 2P × 2P FFT matrix with

the (m + 1, n + 1)st entry 1√
2P

e(−j π
P

mn), Θ is the first N columns
of an identity matrix with size 2P . It follows from (6) & (8) that

ũH
k H = ũH

k [FH
2P D1F2P Θ FH

2P D2F2P Θ]

= ũH
k FH

2P [D1F2P Θ D2F2P Θ]

= 01×2N . (9)

Let ṽk
∆
= F2P ũk for k ∈ [1, 2P − 2N ], we obtain{

ṽH
k D1F2P Θ = h̃

T
1 VT diag(ṽ∗

k)F2P Θ = 01×N

ṽH
k D2F2P Θ = h̃

T
2 VT diag(ṽ∗

k)F2P Θ = 01×N

(10)

Let Qk
∆
= VT diag(ṽ∗

k)F2P Θ, ∀k ∈ [1, 2P − 2N ], it yields

h̃
T
µ [Q1, · · · , Q2P−2N ]︸ ︷︷ ︸

Q

= 0, µ = 1, 2. (11)

Without loss of generality, we assume that the initial delay is
zero. Under (A4), the non-zero initial delay assumption is equivalent
to hji(0) �= 0, ∀i, j ∈ [1, 2] and implies that h̃1 and h̃2 are linearly
independent, therefore {h̃1, h̃2} forms a basis that spans null space
N (Q). Determine two eigenvectors {e1, e2} corresponding to two
0 eigenvalues of Q. Since both e1 and e2 exist in a two-dimensional
space whose basis is {h̃1, h̃2}, it yields the following two equations:{

α1h̃1 + α2h̃2 = e1

α3h̃1 + α4h̃2 = e2
(12)

where α1, α2, α3, α4 are unknown nonzero constants.
Under assumptions (A1) ∼ (A4), h̃2 can be blindly estimated up

to a complex scalar:

ĥ2 = e1 − e1(0)

e2(0)
e2. (13)

Then two individual sub-channels can be extracted from ĥ2.

ĥ12 = {ĥ2(1), · · · , ĥ2(L + 1)}, (14)

ĥ22 = {ĥ2(P + 1), · · · , ĥ2(P + L + 1)}. (15)

In the presence of white noise with variance σ2
w, the SVD of Rz

has the following form:

Rz =
[

Us Ũw

] [ ∑
s 0

0
∑

w

] [
UH

s

Ũ
H
w

]
, (16)

where
∑
s

= diag(σ2
1 , · · · , σ2

2N ),
∑
w

= diag(σ2
w, · · · , σ2

w) with

σ2
1 ≥ · · · ≥ σ2N > σ2

w. The only difference is that we need to use
Ũw to generate Q in (11) instead of using Ũ.

To estimate all the sub-channels related to the 1st antenna, simi-
lar procedures can be applied to {z(l)}2K

l=K+1, which can be written
as:

z(l) =

⎡
⎢⎣

01×N H21

H11 01×N

01×N H22

H12 01×N

⎤
⎥⎦ [

s1(l)
s2(l)

]
+

[
w1(l)
w2(l)

]
. (17)
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3.2. With Prior Channel Order Information

Once (12) is obtained, it is possible to estimate h̃1 and h̃2 jointly if
h12(L) �= 0 or h22(L) �= 0. Specifically,

ĥ2 = e1 − e1(0)
e2(0)

e2. (18)

ĥ1 = e1 − e1(L+1)
e2(L+1)

e2, if h12(L) �= 0,

ĥ1 = e1 − e1(2P−N)
e2(2P−N)

e2, if h22(L) �= 0.
(19)

The major advantage of joint channel estimation is that now we
only need K blocks to achieve the same estimation accuracy as de-
scribed in Section 3.1, which means the complexity is significantly
reduced.

The assumption that h12(L) �= 0 or h22(L) �= 0 can be guar-
anteed if the transmission sequential is designed according to the
following criterion: assuming that the ith transmit antenna has the
knowledge of the maximal channel order among all the sub-channels
related to the ith transmit antenna, denoted by Li, the branch that
transmits data blocks firstly has the smaller Li, and the other branch
needs to delay a symbol period before transmission.

4. EXTENSION TO MIMO SYSTEMS WITH NT > 2

Assume that Nt transmit antennas and Nr receive antennas are em-
ployed in a MIMO system. The transmission scheme is shown in
Fig. 2.
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)1(
~
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~
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~

ti KNS

Data Ze ros

Fig. 2. The proposed transmit delay scheme for general MIMO sys-
tems

For the Part 1, ∀i ∈ [1, Nt], ∀l ∈ [1, K],

s̃i(l)
∆
= [0, · · · , 0︸ ︷︷ ︸

i−1

, si(lN), · · · , si(lN + N − 1), 0, · · · , 0︸ ︷︷ ︸
L+Nt−i

]T ,

where {si(lN), si(lN + 1), · · · , si(lN + N − 1)} denotes the lth
data block emitted from the ith transmit antenna. For the following
parts, each branch delays one more symbol period relative to its pre-
vious part. For example, the 1st branch delays one symbol period at
the Part 2, two symbol periods at the Part 3, and so on. If the delay
exceeds (Nt − 1), take the value modulo Nt.

If the channel order information {Li}Nt
i=1 is known a priori, sort

{Li}Nt
i=1 in an increasing order to obtain indexes {κ(i)}Nt

i=1 such that
{Lκ(1) ≤ Lκ(2) ≤ · · · ≤ Lκ(Nt)}. The transmission scheme can be
simplified to a particular part of the Fig. 2, which satisfies that the
κ(i)th’s antenna delays (i − 1) symbol periods at the beginning.

Once receiving these blocks, the same procedures as described
in Section 3 can be independently applied for each part to estimate
one composite channel. Due to space limitation, the details are omit-
ted here.

5. SIMULATIONS

Channel estimation is measured in terms of the averaged normalized
mean square error (NMSE) defined as

NMSE
∆
=

1

N

N∑
µ=1

‖ĥµ − hµ‖2/‖hµ‖2, (20)

where ĥµ and hµ denote the µth estimated channel and the µth true
channel, N is the total number of channels in a MIMO system. The
phase ambiguities are assumed to be known here. The channel im-
pulse response between each transmitter-receiver pair is generated
randomly and independently. The channel is assumed to be static
within each frame, which is composed of K data blocks. For each
block, BPSK signals are transmitted and a zero-forcing equalizer is
applied for signal detection. More specifically,

x̂(l) = Ĥ
†
z(l), (21)

where Ĥ can be formed by substituting ĥji for hji in (2), † denotes
pseudo-inverse. SNR is defined as the ratio between the average
transmission power per bit and noise power Eb/N0. We set the sys-
tem parameters as L = 5, N = 23, P = N + L + 1 = 29.

5.1. Robustness to Common Zeros among Sub-channels

The following four sub-channels in a 2 × 2 system share a com-
mon zero at (1, 0), as shown in Fig. 3. From Table 1, the pro-
posed subspace-based blind channel estimation algorithm achieves
high estimation accuracy at SNR ≥ 10dB, which demonstrates the
robustness of our subspace-based method.

h11 = [ 0.54 −0.13 + 0.53i −0.47 − 0.03i
0.11 − 0.18i −0.18 + 0.00i 0.13 − 0.32i ]T

h12 = [ 0.36 −0.43 − 0.54i −0.19 + 0.08i
0.15 + 0.26i 0.40 + 0.07i −0.30 + 0.13i ]T

h21 = [ 0.65 −0.07 − 0.35i 0.05 − 0.15i
−0.16 − 0.09i −0.10 + 0.12i −0.39 + 0.46i ]T

h22 = [ 0.29 −0.19 + 0.23i −0.69 + 0.08i
−0.07 − 0.31i 0.21 − 0.06i 0.45 + 0.06i ]T

1.5 1 0.5 0 0.5 1 1.5 2
1

0.5

0

0.5

1

1.5

2

Fig. 3. Plot of zero locations of four sub-channels in the 2×2 system.

5.2. Effectiveness for MIMO Systems

Systems with different block sizes, K = 100, 200, 400, are tested.
All the simulation results are averaged over 500 Monte Carlo runs.
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Table 1. Averaged NMSE of channel estimation for all the sub-
channels which share a common zero, K = 100.

SNR (dB) 0 5 10 15 20 25
NMSE (dB) -5.0 -5.8 -15.6 -21.1 -31.1 -32.4

In Fig. 4 and Fig. 5, the NMSE of the channel estimation and
BER performance are both improved as K increases. The reason
is that the time averaged Rz approaches the theoretical covariance
matrix when K goes up so that the estimation accuracy is further
improved.
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Fig. 4. Performance of blind channel estimation and blind signal
detection for a 2 × 2 system.

In the simulation, the overall data rate is N
P

= 0.7931, while the
data rate of the corresponding Alamouti scheme in [5] with the same
block size is N

2(N+2L)
= 0.3276.

6. CONCLUSION

In this paper, a structured transmit delay scheme was proposed. Based
on the transmitter design, a subspace-based blind channel estimation
algorithm was developed for MIMO systems. With the proposed
approach, blind MIMO channel estimation can be achieved with no
pre-equalization and with no limitations on channel zero locations.
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Fig. 5. Performance of blind channel estimation and blind signal
detection for a 3 × 3 system.
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