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ABSTRACT

We address the problem of jointly optimizing the precoder and
the receivers in a multi-user broadcast system for a linear and
nonlinear transmitter under sum mean square error (MSE)
minimization. By means of alternating optimization (AO),
we find an iterative algorithm which always converges to the
global optimum. In addition to an elegant initialization of the
receivers’ weights, we come up with expressions for the speed
of convergence. Our algorithm is applicable to both single-
antenna and multi-antenna receivers and can be combined
with nonlinear Tomlinson-Harashima Precoding (THP). For
THP, the precoding order can easily be included in the AO.
Moreover, we show that for sum MSE minimization the user-
wise channels are not necessarily diagonalized and give some
ideas how this fact can be exploited.

1. INTRODUCTION

In a broadcast scenario, the decentralized receivers cannot co-
operate. Since the receivers have not enough degrees of free-
dom, precoding techniques have to be applied in such point-
to-multi-point connections to combat the multi-user interfer-
ence. The most popular approaches are zero-forcing (ZF)
[1, 2, 3], and minimum MSE (MMSE) precoding [4, 5, 6, 7].
In the special case of single-antenna receivers, the only avail-
able degrees of freedom at the receivers are scalar weights.
However, only a few of above contributions allow for differ-
ent receiver weights. Especially when the users experience
different path losses, large gains can be expected by admit-
ting different scalars, as shown in [3] for the ZF variant. In
[6] the sum MSE minimization is considered for linear pre-
coding by means of uplink-downlink duality and employing
interior point methods to solve the power allocation problem.
Interior point methods are difficult to handle and have a high
complexity. Moreover, the optimum choice of the precoding
order still remains a major problem in general as well as a te-
dious exhaustive search is required to determine the optimum
power loading, see [5].
Our contribution is an iterative algorithm that converges q-
linearly [8, 9] to the optimum set of precoder and receivers’
weights for both single- and multi-antenna receivers. This
algorithm which alternates between transmitter and receiver

updates while keeping the respective counterpart constant is
based on AO, and is also applicable to the nonlinear THP.
Here, the precoding order can easily be included and updated
in each transmitter update stage. No exhaustive search is re-
quired for the computation of the optimum THP filters. For
multi-antenna receivers, we highlight the interesting fact that
even in the single-user case (general MIMO with cooperating
antennas), the optimum MMSE transmitter and receiver pair
does not necessarily diagonalizes the channel. This can be
exploited for stream balancing.

2. SYSTEM MODEL AND NOTATION

Fig. 1 shows the downlink of the broadcast system with K
non-cooperative users served by a single base station. The
complex-valued data symbols sk of the K users are stacked
in the column vector s = [s1, . . . , sK ]T ∈ AK , whose corre-
lation matrix reads as E[ssH] = σ2

s IK ; A denotes the symbol
alphabet. The transmit filter P = [p1, . . . ,pK ] ∈ CNa×K

consists of K spatial filters pk ∈ C
Na . Here, Na denotes the

number of antennas deployed at the transmitter. The trans-
mission over the frequency flat channel is characterized by
the channel matrix H = [h1, . . . ,hK ]T ∈ CK×Na , whose
k-th row hT

k represents the channel coefficients from all an-
tennas to user k. Throughout this paper, we assume per-
fect channel state information (CSI). The non-negative real-
valued user weights bk are stored in the diagonal matrix
B = diag{bk}K

k=1 ∈ R
K×K
+,0 . With above definitions, the

estimate ŝ for the true symbol vector s can then be expressed
as ŝ = BHP s + Bh ∈ CK . The noise vector h ∈ CK rep-
resents the zero-mean additive noise of all users with covari-
ance matrix E[hhH] = Rη ∈ CK×K . The k-th main diagonal
entry of Rη is σ2

ηk
. We compute the sum mean square error

(MSE) ε(P , B) := E[‖ŝ − s‖2
2] to

ε(P , B) = σ2
s K − σ2

s tr(BHP ) − σ2
s tr(P HHHB)

+ σ2
s tr(BHPP HHHB) + tr(BRηB).

(1)

Notation: Deterministic vectors and matrices are denoted by
lower and upper case bold letters. The respective random vari-
ables are written in sans-serif font. The operators E[·], (·)T,
(·)H, (·)∗, and tr(·) stand for expectation with respect to sym-
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bols and noise, transposition, Hermitian transposition, com-
plex conjugate, and trace of a matrix, respectively. I K is the
K × K identity matrix, and ‖ · ‖2 is the Euclidean norm.

3. JOINT OPTIMIZATION OF THE LINEAR MMSE
PRECODER AND THE RECEIVERS

The joint optimization of the MSE ε(P , B) with respect to
both the precoder P and the receivers’ weights in B reads as{

P DWF, bDWF, B′
DWF

}
= argmin

{P ,b,B′}
ε(P , bB′)

subject to: E
[‖P s‖2

2

] ≤ Etr and B′ = diag{b′k}K
k=1,

(2)

where B = bB′ has been split into B ′ and a common scaling
factor b in order to easily fulfill the power constraint.

4. ITERATIVE SOLUTION OF THE LINEAR MMSE
OPTIMIZATION

Since there is no closed form solution for the joint opti-
mization w.r.t. the set {P , b, B ′} in (2), we optimize the
precoder and the scaling factors separately in an alternat-
ing fashion. This procedure is termed alternating optimiza-
tion, block-nonlinear Gauss-Seidel iteration, grouped coordi-
nate descent, or block-relaxation [8]. This attractive iterative
scheme splits up the joint optimization into two partial sub-
optimizations, namely the optimum transmitter P and the op-
timum common scalar weight b for fixed receivers B ′,1 and
the optimum receiver weights B ′ given a fixed transmitter P
and a fixed common scalar weight b. The benefit results from
the fact that the sub-optimizations have closed form solutions
[9]. Hence, we do not need to make use of the inconvenient
interior point method in order to find a solution of (2) as pro-
posed in [5, 6].

4.1. Optimization of the Precoder for Fixed Receivers

Assume we are given fixed unscaled receiver weights b
′(n)
k ,

with the superscript (·)(n) denoting the iteration number and
n=0 representing the initialization step. Grouped coordinate
descent means that we minimize the MSE w.r.t. the variables
P and b of the first partitioning {P , b}, keeping all variables
from the second partitioning {B ′} constant. Given the fixed
weights B′(n), the optimum precoding matrix P (n+1) and the
optimum common weight b(n+1) minimizing the sum MSE
follow from

{P (n+1), b(n+1)} = argmin
{P ,b}

ε(P , bB′(n))

subject to: E
[‖P s‖2

2

] ≤ Etr,

(3)

and P (n+1) reads as [3]

P (n+1) =
1

b(n+1)

(
HHB′(n)2H+

tr(B′(n)2Rη)
Etr

I

)−1

HHB′(n).

(4)
1The common weight b is optimized during the transmitter computation

since otherwise a closed form solution for the transmitter is not possible.
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Figure 1. Downlink of the linear multi-user multiple-input
single-output (MU-MISO) system.

The weight b(n+1) is computed to fulfill the power constraint
in (2). Note that we do not optimize (3) with respect to
B′, and that (4) is invariant to a scaling of B ′ by α, i.e.,
P (n+1)

(
B′) = P (n+1)

(
αB′), because b(n+1) is propor-

tional to α−1. The mapping in (4) that generates the set
{P (n+1), b(n+1)} from the set {B′(n)} is called a minimiza-
tion mapping [10] since the updated set {P (n+1), b(n+1)} is
the unique optimum given fixed {B ′(n)}. This property is fa-
vorable as no (possibly suboptimum) line search techniques
with gradient related search directions have to be applied in
order to find the updated set {P (n+1), b(n+1)} for step n + 1
[10]. Because {P (n+1), b(n+1)} are optimum for fixed un-
scaled receiver weights B ′(n), we find for any P satisfying
the power constraint in (2) and for any b, that

ε
(
P (n+1), b(n+1)B′(n)

)
≤ε

(
P , bB′(n)

)
. (5)

4.2. Optimization of the Receivers for a Fixed Precoder

Having computed the updated set {P (n+1), b(n+1)}, we now
optimize the MSE w.r.t. the second partitioning {B ′}, in or-
der to compute the new set {B ′(n+1)}. We can distinguish
two types of connections [10]: Parallel connection implies
that B′(n+1) is updated on the basis of {P (n), b(n)}, i.e.,
the results of the previous transmitter update are not incor-
porated. However, as the set {B ′(n)} of the previous iteration
step has been computed by a minimization mapping, {B ′}
would be updated only every second step. Serial connec-
tion stands for incorporating the updates of all previous vari-
able sets for the computation of the next set. In our case,
this implies that {B′(n+1)} is determined on the basis of
{P (n+1), b(n+1)}. Since we apply the minimization mapping,
we clearly make use of the serial connection. The receiver
weights b(n+1)B′(n) are in general not optimum for the pre-
coder P (n+1), except for the case that they have coinciden-
tally been chosen to be b(n+1)B′(n) = BDWF. From the
k-th receiver’s point of view, Fig. 2 shows the received signal
model for the second intermediate update stage in step n + 1.
If receiver k does not scale its received signal by b(n+1)b

′(n)
k

but allows for an unscaled weight b ′k different from b
′(n)
k in-

stead, its resulting MSE εk(P (n+1), b(n+1)b′k) reads as
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Figure 2. Received signal model of user k.

εk

(
P (n+1), b(n+1)b′k

)
= E

[∣∣∣sk − ŝ(n+1)
k

∣∣∣2]

= σ2
s −b(n+1)b′khT

k p
(n+1)
k σ2

s −b(n+1)b′kp
(n+1)H
k h∗

kσ2
s

+b(n+1)2b′2k hT
k P (n+1)P (n+1)Hh∗

kσ2
s +b(n+1)2b′2k σ2

ηk

(6)

with p
(n+1)
k = P (n+1)ek representing the k-th column of

P (n+1), and the estimate ŝ (n+1)
k being defined as

ŝ(n+1)
k = b(n+1)b′k

(
hT

k P (n+1)s + hk
)

. (7)

Now, receiver k can apply a scalar MMSE filter

b
′(n+1)
k = argmin

b′k

εk

(
P (n+1), b(n+1)b′k

)
, ∀k (8)

minimizing (6). This leads to the unscaled receiver weights

b
′(n+1)
k =

σ2
s hT

k p
(n+1)
k

b(n+1)(σ2
s hT

k P (n+1)P (n+1)Hh∗
k + σ2

ηk
)
. (9)

Note that the optimizations in (8) are decoupled. It is obvious
that the MSE decreases or stays constant compared to (5), i.e.,

ε
(
P (n+1), b(n+1)B′(n+1)

)
≤ ε

(
P (n+1), b(n+1)B′(n)

)
. (10)

4.3. Alternating Optimization

The transmitter iterates through several intermediate steps of
both the precoder and the receivers’ weights updates, see Al-
gorithm 1. In Line 1, the maximum number of iterations is
chosen, Line 2 allows to set a relative MSE descent threshold
cth in order to terminate the algorithm before n−1 has reached
nmax if the relative MSE descent is below cth. Starting with
some initialization weights B ′(0), Line 6 computes the pre-
coder P (n+1) and the common receiver weight b(n+1), Line 8
the new receiver weights B ′(n+1). If the relative MSE de-
scent is below cth, Line 11 terminates the program. In case of
a fixed number of iterations, Lines 7 and 9–12 can be skipped.

4.4. Choice of Initialization Weights

The choice of the initialization weights B ′(0) in Line 3 dras-
tically influences the speed of convergence. It is essential to
choose all initial weights b

′(0)
k �= 0 ∀k, otherwise, the weights

would stay zero during all iterations, see the update rules (4)
and (9). Nonetheless, the case might occur, where some users
may be switched off in order to minimize the sum MSE, see
[3]. Our algorithm then asymptotically switches off these
streams. In [11], Serbetli et al. propose the use of random
weights in their first step. We instead propose to initialize
the AO with the weights of the diagonal ZF filter [3], which
leads to dramatically increased convergence especially in the
medium to high SNR-regime.

4.5. Convergence Analysis

Combining (5) and (10), we find that the MSE reduces mono-
tonically. In combination with the fact that the MSE is lower
bounded, convergence follows. We are able to prove that Al-
gorithm 1 always converges to the global optimum by show-
ing that only one stationary point is a minimum and trajec-
tories to saddle-points or maxima are impossible. The lat-
ter is proven by relating the behavior of Alg. 1 in the vicin-
ity of a saddle-point to the steepest descent variant, which
never converges to such a saddle-point. The MSE series
{ε(n)} := {ε(P (n), b(n)B′(n))} of the optimization is lo-
cally q-linear convergent if the joint optimization is split
into the receiver weights update and into the precoding fil-
ter update, see [8, 9]. The q-linear convergence implies that
for the MSE series {ε(n)} with limit εDWF, there exists an
integer m and a real valued scalar � ∈ [0, 1), such that
‖ε(n+1)−εDWF‖ ≤ �‖ε(n)−εDWF‖ is valid for n ≥ m [12].
The value � governs the speed of convergence and depends
on the spectral radius of a transformed Hessian in the global
optimum [8]. A clear advantage of the alternating optimiza-
tion compared to gradient methods is that there is no need to
compute optimum step-sizes for line search algorithms and
no gradient projections have to be evaluated.

5. EXTENSION TO THP AND MULTI-USER MIMO

The alternating optimization scheme can conveniently be ap-
plied to nonlinear THP. The solution of the conventional
MMSE THP precoder [7], which assumes identical user
weights B′ = IK can again be utilized, when we substi-
tute H ← B′H and Rη ← B′RηB′. The receiver update

follows from b
′(n+1)
k = argminb′k

E[|dk − d̂k|2], with

d̂k = b(n+1)b′k
(
hT

k P (n+1)v (n+1) + hk
)

,

v (n+1) =
(
IK − F (n+1)

)−1

Π(n+1)d .
(11)

See [7] for the definition of the respective variables. In con-
trast to [5], where sorting is impossible and an exhaustive
search has to be accomplished to find the optimum receiver
weights, we can easily incorporate the sorting order in the
precoder update stage and find the weights by the alternating
optimization.
For MU-MIMO Systems, the AO technique also leads to the
jointly optimized precoder and receiver matrices. However,
in contrast to the commonly held assumption that the chan-
nel has to be diagonalized, the resulting transmitter-channel-
receiver chain is not diagonal in general. The sum MSE is in-
variant to any unitary matrix QH

k and Qk multiplied to RHS
and LHS of the transmitter and receiver matrices of user k,
respectively. However, the individual streams of user k have
different MSEs then. Diagonalization is achieved when Qk

follows from an eigenvalue decomposition, stream-balanced
MSEs and, according to the Schur-Horn theorem, any MSE
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Algorithm 1 Iterative computation of filters.
1: choose nmax {maximum iterations}
2: choose cth {threshold constant}
3: get B′(0) {initialization weights}
4: n = 0 {current iteration counter}
5: while n ≤ nmax do
6: update P (n+1) and b(n+1) via (4) {new precoder}
7: ε

(n+1)
P := ε(P (n+1), b(n+1)B′(n)) {MSE Tx-update}

8: update B′(n+1) via (9) {new weights}
9: ε

(n+1)
B ′ := ε(P (n+1), b(n+1)B′(n+1)) {MSE Rx-update}

10: if
|ε(n+1)

P
−ε

(n+1)
B′ |

ε
(n+1)
P

< cth then

11: break {stop if rel. descent below threshold}
12: end if
13: n ← n + 1 {increase iteration counter}
14: end while

set which majorizes the eigenvalues of the MSE matrix can
be achieved by applying the generalized Bendel-Mickey algo-
rithm from [13], which carries out plane Givens rotations.

6. SIMULATION RESULTS

We study the performance of the linear MMSE precoder in
terms of uncoded bit-error-ratios (BERs). K = 4 users are
served by a base-station with Na = 4 antennas. Users 1 and 2
have the same average channel powers which are ten times
smaller than the average channel powers of users 3 and 4 for
example due to pathloss. The total average channel power
is normalized such that for the Frobenius norm, E[‖H‖2

F] =
NaK = 16 holds. The MMSE precoders are shown in
Fig. 3. Here, the conventional WF from [4] with identical
user weights allocates different MSEs and different BERs
to the users. The stronger users 3 and 4 (plus-marker) ex-
hibit smaller BER values than the weaker users (star-marker).
The user averaged BER has the dot marker. When we al-
low for different user weights, the DWF variant yields only
slight BER improvements for the weak users (triangle down
marker). Nonetheless, the stronger users (triangle-up) fea-
ture a BER reduction compared to the conventional counter-
part. The user averaged BER curve (square marker) exhibits
a 1 dB gain to the average BER curve of the MMSE filter
with identical weights (dot marker) at a BER of 0.1. We as-
sumed cth = 0.001, see Algorithm 1. The THP versions have
dashed lines, only the strong users are shown here, as for the
weak users, there is almost no gain when we allow for differ-
ent weights. Again, a gain of nearly 2 dB can be achieved.
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