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ABSTRACT

Orthogonal frequency division multiplexing (OFDM) provides a vi-
able solution to communicate over frequency selective fading chan-
nels by converting them to an equivalent collection of flat fading
channels. In doing so, OFDM systems fail to reap the benefits of
diversity available in multipath fading channels. To ameliorate this
shortcoming of OFDM, explicit diversity in the form of redundant
or non-redundant coding is needed. Our main goal in this paper is
to explore different options for low complexity encoder design and
compare their performance and complexity. Specifically, in the class
of non-redundant codes we discuss the use of signal space diver-
sity codes in OFDM systems. For redundant codes, we introduce a
novel low complexity postcoded-OFDM system where coding is em-
ployed after performing the IFFT (inverse fast Fourier transform) in
the transmitter to reduce system complexity. Simulation results show
that postcoded-OFDM with redundant coding outperforms other ch-
oices of encoder design considered in this paper.

1. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) offers several
advantages like resilience to multipath fading and intersymbol inter-
ference, low complexity and others. It is believed to be a promising
technique for future broadband wireless communications [1].

While OFDM systems convert a multipath fading channel into a
series of equivalent parallel flat fading channels, they lack the inher-
ent diversity available in multipath channels. Different coded OFDM
systems have been reported that employ some form of channel cod-
ing or precoding [2, 3] to improve system performance. The error
analysis of communication systems over fading channels shows that
it is the Hamming distance (defined later in the paper) that governs
performance over fading channels [4]. It is important to mention that
the Hamming distance of a signal constellation can be increased by
non-redundant [5] or redundant coding [3].

Our objective in this paper is to apply non-redundant and redun-
dant coding to uncoded OFDM system and compare the performance
and complexity of the resulting systems. We introduce the idea of
postcoding that helps reduce the complexity of OFDM transmitter
and obtain the best performance.

The paper is organized as follows. Section 2 presents the system
details and formulates the problem mathematically. In Section 3, we
discuss the error analysis of coded OFDM systems over fading chan-
nels and highlight the importance of Hamming distance. Section 4
and 5 discuss the non-redundant and redundant coding schemes, re-
spectively. We present simulation results in Section 6 and conclude
the paper in Section 7.
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2. SYSTEM DETAILS AND PROBLEM FORMULATION

Consider an uncoded OFDM system that is implemented by using
an N -point IFFT/FFT. The information symbols are mapped to the
signal space according to the modulation scheme. The serial stream
of modulated data symbols b(n) are grouped in blocks of size N
such that the ith block is expressed as b(i) :=

�
b(iN), b(iN +

1) · · · b(iN + N − 1)
�
. Let FN be the N × N FFT (fast Fourier

transform) matrix with (n, k)th entry as

[FN ]n,k = (1/
√

N) exp{−j2π(n − 1)(k − 1)/N}. (1)

Ignoring the block index i, the output of IFFT (inverse fast Fourier
transform) block is an OFDM symbol in the form of N × 1 vector
and is given by

x = FH
N b. (2)

The insertion of the cyclic-prefix (CP) at the transmitter and CP-
removal at the receiver, renders the channel matrix H an N × N
circulant matrix �H. The received OFDM symbol can therefore be
expressed as:

r = �Hx + η̃ = �HFH
N b + η̃, (3)

where η̃ represents the N × 1 additive Gaussian noise vector. At
the receiver, multiplication with the FFT matrix FN diagonalizes
the channel matrix �H such that it contains the N point discrete fre-
quency response of the channel given by [6]:

FN
�HFH

N = HD = diag
�
FN h̃

�
, (4)

where h̃ is N × 1 vector obtained from the concatenation of Lh

channel taps, {hl}Lh
l=1, and N−Lh zeros. Thus, the received OFDM

symbols can be simply written as:

u = HDb + η. (5)

The diagonalization of �H converts an ISI channel into an ISI free
channel and eliminates the need for a complex receiver. Although
OFDM systems provide a means to have simple receivers, the sys-
tem performance deteriorates severely in the presence of channel
frequency nulls. This deterioration can be avoided by employing
explicit diversity or redundancy (coding) in the OFDM symbols.

Depending on the ease of implementation, the coding process
can be called before or after the IFFT block in the transmitter as
shown in Fig. 1. We refer to the former as precoded OFDM. In this
case, the transmitted OFDM symbols can be written as:

y = FH
NLAb. (6)

We refer to the latter as postcoded-OFDM (PC-OFDM). In this case,
we encode the OFDM symbols after the IFFT as:

y = Ax = AFH
Nb. (7)
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In both cases, we consider complex field coding i.e., A (or A) ∈
C

K×N with K ≥ N , instead of Galois field as it provides more
degrees of freedom [3]. It is important to note that any postcoding
scheme can be made equivalent to a precoding scheme by selecting

A = FNLAFH
N . (8)

Another important factor in the design of encoding matrix is the
availability of bandwidth. If the system can tolerate a decrease in
bandwidth efficiency, it is always desirable for the sake of system
performance to use redundant encoding where A (or A) has a tall
structure of K × N with K > N . Similarly, to save bandwidth one
can use non-redundant coding by selecting A with square structure,
i.e., N × N . An obvious advantage of postcoding over precoding
is the savings in the IFFT module especially for the redundant case.
Before discussing these possible choices in detail, we first outline
the general criterion used to construct “good” encoding matrices in
the next section.
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(a) Precoded OFDM system

�� � �
�������	


������	
i

b

NNL × NLNL ×NLNL ×

�

η

i
b̂

NN ×

(b) Postcoded OFDM system

Fig. 1. Precoded vs. Postcoded OFDM systems

3. CODE DESIGN CRITERION FOR FADING CHANNELS

It has been shown in the recent research that the criteria commonly
used to design codes for additive white Gaussian noise (AWGN)
channels have to be adjusted when dealing with a fading channel (see
[4] and references therein). As we shall see soon, the performance
of a code over fading channels depends on the minimum Hamming
distance and not on the Euclidean distance between codewords. To
see how the choice of encoder affects the system performance, con-
sider the precoding scheme of Fig. 1(a) where the received symbol
can be expressed as:

u = HDAb + η. (9)

To assess system performance over uncorrelated fading channels, we
adopt the average pairwise error probability (PEP) technique that has
been derived in similar context in [3, 7]. By definition, the PEP is
the probability of erroneously detecting b′ when b was transmitted.
We consider ML detection and perfect channel knowledge at the re-
ceiver. In order to find the PEP (see [3] for details), we need to define
a matrix Ae := (DeV)HDeV where V is the truncated FFT ma-
trix with [V](k,l) = e−j2πkl/NL and De = A(b − b′). Now, for
Rayleigh fading channels with uncorrelated paths, the PEP is given
by:

Pr(b → b′) ≤
�

1

4No

�−Gd
�

Gd�
l=1

αlλe,l

�−1

, (10)

(a) (b)

Fig. 2. Effect of signal space diversity on 4-PSK. (a) Without sig-
nal space diversity, δmin(A) = 1. (b) With signal space diversity,
δmin(A) = 2

where No/2 is the power spectral density of additive white Gaussian
noise, αl = E[|hl|2] is the channel correlation and λe are the eigen-
values of Ae. It can be seen from (10) that the PEP depends on the
following two factors:

• Diversity gain (Gd): Roughly speaking, the diversity
gain represents the slope of the PEP curve especially at
high SNR. It is related to the rank of Ae [7].

• Coding gain (Gc): The coding gain controls the shift in
the PEP curve and depends on the product of eigenvalues

{λe,l}Lh
l=1 of Ae such that Gc =

��Gd
l=1 λe,l

�1/Gd

It was shown in [3] that the rank of Ae is related to the minimum
Hamming distance of the codewords. If A is the set of codewords
such that Ab,Ab′ ∈ A then the Hamming distance δ(Ab,Ab′)
between these codewords is the number of non-zero entries in A(b−
b′). The minimum Hamming distance of the codeset A is defined
as: δmin(A) = min{δ(Ab,Ab′)|Ab,Ab′ ∈ A}

The second parameter that controls the shift in the PEP curve
is the coding gain. However, it is obvious from (10) that since Gd

appears as exponent it can affect the system performance more than
Gc.

4. NON-REDUNDANT CODING IN OFDM

It follows from the above discussion that Hamming distance plays a
major role in determining the system performance. While saving the
bandwidth, the system performance can still be improved by using
non-redundant coding with A (or A) ∈ C

N×N , i.e., unity code rate.
An example of non-redundant coding is signal space diversity where
the original signal constellation is mapped to a lattice constellation of
larger Hamming distance. The name signal space diversity reminds
us that it is the choice of signal space that increases the diversity. A
simpler way to achieve this is by choosing A as a rotation matrix
that can rotate the signal constellation to increase the Hamming dis-
tance [4]. The design of rotational matrices for signal space diversity
is discussed in [5]. Fig. 2 illustrates the application of signal space
diversity where the Hamming distance of 4-PSK is increased from 1
to 2 by selecting A as

A =
1√
2

�
1 ejπ/8

1 −ejπ/8

	
. (11)

In this paper, we apply signal space diversity to an OFDM sys-
tem by selecting A as a rotational matrix and evaluate system perfor-
mance. Because of non-redundant coding, we apply this rotational
matrix in the form of precoding. Due to the increased Hamming
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distance, the application of signal space diversity helps improve the
performance of the OFDM system without sacrificing the bandwidth
efficiency. This assertion will be confirmed through simulations.

5. REDUNDANT CODING IN OFDM

For redundant coding, we are interested in the encoder design such
that A (or A) ∈ C

K×N with K > N . While recent research em-
phasized redundant precoding [8], we explore the use of redundant
postcoding in OFDM systems and refer to this system as postcoded-
OFDM (PC-OFDM). In postcoding, the redundant encoding is per-
formed after the IFFT that leads to a reduced complexity IFFT in the
transmitter.

5.1. PC-OFDM Encoder Design

The first step in PC-OFDM is to introduce explicit frequency diver-
sity in OFDM symbols that can be fairly easily achieved by upsam-
pling the output of IFFT by L. Since upsampling the signal in time
domain creates multiple replicas of the signal in frequency domain,
this operation is equivalent of repeating the modulated source sym-
bols prior to IFFT. Since upsampling alone cannot increase the Ham-
ming distance, we therefore multiply the upsampler output with unit
magnitude complex number sequence. The block diagram of PC-
OFDM system is shown in Fig. 3. This particular design of encoder
will render the NL × N postcoding matrix as:

A =

�
[A]n,k = ejn

NL
for (n, k) = (iL − 1, i) for i = 1, · · · , N

0 otherwise.
(12)

To gain some insight into PC-OFDM, we find the equivalent
precoding matrix of PC-OFDM by using (8). Notice that multipli-
cation operation in Fig. 3(a) corresponds to circular convolution in
frequency domain, thus

A = C ⊕ L, (13)

where C and L are the frequency domain matrices of number se-
quence c = 1

NL
[ej1, . . . , ejNL]T and the upsampling operation,

respectively. As upsampling by factor L corresponds to L times rep-
etition in frequency domain, the matrix of upsampling operation of
order NL×N is obtained by column-wise concatenation of L iden-
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(a) PC-OFDM transmitter
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(b) PC-OFDM receiver

Fig. 3. PC-OFDM transceiver block diagram

tity matrices IN , i.e.

L =

�
��
IN

...
IN

�
��

NL×N

.

The frequency domain matrix C can be computed as:

C = FH
NL c.

In matrix form, the circular convolution of (13) can be implemented
as the product of circulant matrix formed by CH and L. After sim-
plification, the equivalent precoding matrix of PC-OFDM is given
by:

A =

�
��

cH FNL,1

...
cH FNL,NL

�
��
�
��
IN

...
IN

�
�� , (14)

where FNL,i is obtained from the ith (row-wise) circulant shift in
FNL. Let us consider an example of PC-OFDM system.

Example 1: Consider the design of PC-OFDM encoder for N =
2 and L = 2. The postcoding and equivalent precoding matrices are:

A =
1

4

�
���

ej1 0
0 0
0 ej3

0 0

�
��� ,A =

1

4

�
���

ej1 + ej3 ej1 − ej3

ej1 − ej3 ej1 + ej3

ej1 + ej3 ej1 − ej3

ej1 − ej3 ej1 + ej3

�
��� .

This bears a close resemblance with rotation matrix of signal space
diversity codes (cf. (11)). Thus in a sense, the PC-OFDM sys-
tem does perform signal constellation rotation through multiplica-
tion with unit amplitude phasors and improves the system perfor-
mance over fading channels. Furthermore, PC-OFDM also increases
the Hamming distance of the codeset as stated in the following propo-
sition:

Proposition 1. The PC-OFDM system achieves the maximum avail-
able diversity gain.

Proof: We omit the proof due to limited space.

5.2. PC-OFDM Decoder

We find that the concept of equivalent precoding matrix of PC-OFDM
facilitates the decoder design as well. With the equivalent precoding
matrix A as defined in (8) and the assumption that the receiver has
channel information, the ML decoder is given by

b̂ = min
bi

||u − HDAbi||.

ML detection algorithm is computationally extensive but provides
the best performance. Other choices of suboptimum detectors in-
clude linear detectors like zero forcing and minimum mean square
error detectors [3].

5.3. Complexity Comparison with Precoded OFDM Systems

It is obvious from Fig. 1 that PC-OFDM systems result in less com-
plexity IFFT modules. For instance, a PC-OFDM transmitter with
N source symbols requires an N -point IFFT module with compu-
tational complexity of O(N log N) per N data symbols or sim-
ply O(log N) per data symbol. In contrast, a redundant precoded
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OFDM transmitter [3] with NL × N (where L ∈ R and L ≥ 1)
encoding has a computational complexity of O(L log NL) per data
symbol. This reduced complexity of PC-OFDM transmitter makes
it suitable for wireless personal area networks. However, receivers
of both systems employ equal complexity FFT modules for same
code rate (1/L). It is important to mention that the IFFT operation
in PC-OFDM transmitter is performed at information symbol data
rate, however, in precoded OFDM this operation is performed after
encoding and at higher sampling rate. Thus, PC-OFDM saves power
by computing the IFFT operation at lower rate.

In addition to the savings in FFT modules, the symmetrical struc-
ture of coding matrices in PC-OFDM can be exploited to further re-
duce the system complexity. As evident from the sparse nature of A
in (12), the postcoding in the transmitter is a low cost operation and
requires only O(N) complex multiplications. Similarly, the decod-
ing matrix needed at the receiver is block repetitive matrix (cf. 14),
i.e.,

A =
�
AT

1 · · · AT
1� �� �

repeats L times

�
,

where AT
1 is the N × N block of A. Based on these observations,

we compared in Table 1 the number of complex multiplications and
additions needed in PC-OFDM and precoded OFDM systems [3].

Table 1. Number of complex multiplications and additions
Transmitter Receiver

PC-OFDM System O(N ) O(2N2)

Pre-coded OFDM O(2N2L) O(2N2L)

6. SIMULATION RESULTS

We perform simulations to compare the bit error rate (BER) of coded
and uncoded OFDM systems as shown in Fig. 4. The information
symbols are QPSK modulated to yield B = {±1 ± j}. The sim-
ulations are performed over Rayleigh fading channel with five taps
that are generated according to the Jakes model. For coded OFDM,
we consider different choices of encoder matrix A (or A) discussed
in this paper. For non-redundant coding, we consider N = 2 and
the rotation matrix as given in (11). The results in Fig. 4 show
that OFDM with signal space diversity (non-redundant OFDM) can
achieve the same BER as that of uncoded OFDM but with 2.5dB less
signal to noise ratio (SNR). For redundant coding, we consider the
novel PC-OFDM with N = 2 and L = 2 that results in code rate of
1/2 and gives the best performance as shown in Fig 4. We also ob-
tained the BER performance of pulsed-OFDM [9] with N = L = 2
and the results are shown in Fig. 4. The slope of the curve shows
that pulsed-OFDM could not achieve the full diversity order avail-
able in the system. To compare with precoded OFDM systems, we
employed the real (referred as precoded OFDM-a) and complex (re-
ferred as precoded OFDM-b) precoders proposed in [3] and showed
their BER results in Fig. 4. As seen from Fig. 4, the BER perfor-
mance depends on the choice of the precoder.

7. CONCLUSIONS

We presented a detailed account of redundant and non-redundant
coding in OFDM systems. To increase the Hamming distance of the
signal space, we introduced a non-redundant coding in the form of
signal space diversity in OFDM systems and showed that it provides

0 2 4 6 8 10 12 14

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r

Uncoded OFDM

Non−redundant OFDM

PC−OFDM

Precoded OFDM−a [3]

Precoded OFDM−b [3]

Pulse−OFDM

Fig. 4. BER of OFDM system with redundant and non-redundant
coding

a gain of 2.5dB in SNR through simulations. The novel PC-OFDM
system, discussed in this paper, introduces redundant postcoding in
OFDM and is a low complexity system that improves the perfor-
mance by reducing bandwidth efficiency.
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