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ABSTRACT

Spatial multiplexing (SM) over multiple-input multiple-output

wireless channels provides significant capacity gains. In a SM

scheme, the eigenmode having the least signal-to-noise ratio

(SNR), degrades the overall error rate performance. In this

paper, we propose co-ordinate interleaved spatial multiplex-

ing that maximizes the minimum SNR over all eigenmodes.

This linearly decodable SM scheme needs the knowledge of

the right singular vectors of the channel at the transmitter, and

the singular values and left singular vectors at the receiver.

We derive the SNR expressions for the proposed scheme and

compare its performance with other closed-loop schemes us-

ing computer simulations.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems, em-

ploying multiple transmit and receive antennas at both ends,

promise significant improvement in the capacity compared

to conventional single-input single-output (SISO) systems [1,

2]. In MIMO spatial multiplexing (SM) systems, the incom-

ing data is divided into multiple sub-streams and each stream

is transmitted on a different antenna. If successfully decoded,

this increases the capacity nearly linearly with the number of

transmit antennas [1, 2]. Initially, SM systems were devel-

oped assuming channel state information (CSI) only at the re-

ceiver, e.g., Bell labs layered space time (BLAST) scheme [3].

However, it has been shown recently that, having CSI both

at transmitter and receiver can significantly improve the er-

ror rate performance compared to that of having CSI only at

the receiver. CSI can be obtained at the transmitter by uti-

lizing channel symmetry in time division duplex (TDD) sys-

tems, and by having an explicit feedback link from receiver

to transmitter in non-TDD systems.

With CSI available at both ends, it is well known that

channel diagonalization by singular value decomposition (SVD)
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and water filling achieves capacity [1]. As described in sec-

tion 3, water filling has significant implementation difficul-

ties, and this has prompted the researchers to design joint

transceiver techniques for SM, that can efficiently exploit CSI

at both ends with minimum complexity (see [8], and refer-

ences therein).

In this paper, we propose a novel SM scheme that utilizes

the concept of co-ordinate interleaving (CI) [4] along with

SVD of the MIMO channel. The proposed scheme, which

we call co-ordinate interleaved spatial multiplexing (CISM),
achieves better diversity order than existing SM schemes that

use CSI at both ends and also enables single symbol decod-

ability at the receiver.

2. SYSTEMMODEL

We consider a Nt × Nr MIMO system with Nt transmit and

Nr receive antennas, Nr ≥ Nt. Let x = [x1 x2 . . . xNt
]T ∈

C
Nt×1 be the transmit symbol vector and tr{E [

xxH
]} = 1.

Further, assume that xi ∈ A,∀i, where A is a complex signal
set with cardinality |A| = M . Note that superscripts T and
H denote transpose and conjugate transpose, respectively. E
denotes expectation operator and IN denotes N ×N identity
matrix. Discrete time baseband input-output relation of the

MIMO channel is,

y = Hx + n (1)

where, y = [y1 y2 . . . yNr
]T ∈ C

Nr×1 is the received sig-

nal vector and H ∈ C
Nr×Nt is the channel matrix with hij

representing the channel gain from jth transmit antenna to

ith receive antenna. Further, hij are i.i.d circularly symmet-

ric complex Gaussian with zero mean and unit variance, i.e.,

hij ∼ CN (0, 1). Throughout the paper, we assume that H
is a full rank matrix, i.e.. K = rank(H) = min{Nt, Nr}.
Also, n = [n1 n2 . . . nNr

]T is the additive noise vector with
ni ∼ CN (0, σ2

n), and E[nnH] = σ2
nINr

.

With perfect CSI at the receiver, optimum error rate per-

formance can be achieved by maximum likelihood (ML) re-

ceiver. ML receiver achieves N th
r order diversity but with

complexity O(MNt) which becomes prohibitive to imple-
ment even for moderate values ofM and Nt [5] .
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Successive interference cancellation (SIC) receiver is a

low complexity approach that achieves a diversity order of

Nr − Nt + 1 [5, 6]. It decodes the symbols sequentially by
using successive nulling and cancellation technique. H is de-
composed as H = QR using standard QR decomposition,

where Q is Nr × Nt unitary matrix and R is Nt × Nt upper

triangular matrix [7]. Left-multiplying y withQH yields,

z = Rx + w (2)

where z = QHy and w = QHn. The estimates x̂Nt
, . . . , x̂1

are obtained by (successive) back-substitution. If x̂n is in er-

ror, then all the subsequent symbol estimates in that block can

be in error. Ordered SIC (OSIC) improves SIC by optimally

ordering y. OSIC receiver realizes a diversity order that is

greater than Nr − Nt + 1 but less than Nr [5].

Ignoring error propagation, we can observe that SIC re-

ceiver decomposes the MIMO channel into Nt parallel SISO

channels [8], zi = riixi + wi, i = 1, 2, . . . , Nt, with ith

sub-channel SNR given by,

SNRi,sic = r2
ii

E[|xi|2]
σ2

n

, i = 1, 2, . . . , K (3)

It is important to note that overall error rate performance of

SIC/OSIC receiver is limited by the error rate of the sub-

channel having lowest SNR.

3. CSI AVAILABLE AT BOTH TRANSMITTER AND
RECEIVER

With CSI at both both ends of the link, the MIMO channel

can be diagonalized using SVD. Let the SVD of H be given

by H = UDVH , where U and V are unitary matrices and

D = diag
(√

λ1, . . . ,
√

λK , 0, . . . , 0
)
. Here,

√
λi is the ith

singular value of H and
√

λ1 ≥ √
λ2 ≥ . . . ≥ √

λK [7].

To diagonalize the channel, we transmit s = Vx and left-

multiply the received vector y by UH , to get z = Dx + w,

where z = UHy and w = UHn. Since D is a diagonal

matrix,

zi =
√

λixi + wi, i = 1, 2, . . . ,K (4)

Thus the rank K MIMO channel matrix is decomposed into
K non-interfering parallel SISO sub-channels which are also
referred to as eigen sub-channels or eigen modes of H. The

SNR of the ith sub-channel is given by,

SNRi,svd = λi
E[|xi|2]

σ2
n

i = 1, 2, . . . ,K (5)

which is very similar to the expression for SNR in (3) for the

SIC receiver. For a typical MIMO channel H, λmax

λmin

� 1
which means that λi’s differ in magnitude by large amounts.

As in the SIC receiver, the overall error rate of this SVD

based receiver is degraded by the sub-channel having low-

est SNR. Information theoretic results shows that the capac-

ity of the MIMO channel can be achieved by water filling on

these unequal eigen sub-channels [1]. Water filling may re-

sult in widely varying modulation and coding schemes across

the sub-channels which requires significant additional infor-

mation at the receiver so as to enable it to identify and de-

code the sub-streams correctly. Also, optimum water filling

requires non-integer number of bits to be allotted to some of

the sub-channels which is not possible with standard signal

constellations. These practical difficulties have made it nec-

essary to design new transceiver techniques with CSI at both

ends.

3.1. Geometric Mean Decomposition (GMD) Transceiver

With the observation that the overall error rate of SIC receiver

is limited by the lowest SNR sub-channel, which in-turn de-

pends on min
i
{rii}, i = 1, 2, . . . , Nt, Jiang et al. [8] have

proposed a precoding scheme that maximizes the min
i
{rii}.

The precoding scheme is based on geometric mean decompo-

sition (GMD) ofH developed by the same authors [8]. GMD

of any matrixH ∈ C
Nr×Nt with rankK decomposesH into

Q̌ŘP
H
, where Q̌ and P are unitary and Ř is a K × K up-

per triangular matrix with its diagonal elements equal to the

geometric mean of the non-zero singular values ofH; i.e.,

řii =

⎛
⎝

K∏
j=1

√
λj

⎞
⎠

1/K

, i = 1, 2, . . . , K (6)

With the knowledge of D and V at the transmitter, P is cal-

culated through GMD algorithm. Transmitting the precoded

vector s = Px and left multiplying the received signal y with

Q̌H results in z = Řx+w, where z = Q̌Hy andw = Q̌Hn.

x̂Nt
, . . . , x̂1 are obtained by (successive) back-substitution.

Ignoring error propagation, we can obtain SNRi,gmd, SNR

of the ith sub-channel in GMD receiver, as

SNRi,gmd = ř2
ii

E[|xi|2]
σ2

n

i = 1, 2, . . . ,K (7)

4. CO-ORDINATE INTERLEAVED SPATIAL
MULTIPLEXING (CISM)

We note that error rate performance of the SVD based re-

ceiver can be improved by maximizing min
i
{SNRi,svd}, i =

1, 2, . . . ,K. We use co-ordinate interleaving to achieve this.

4.1. Co-ordinate Interleaving

The concept of co-ordinate interleaving is to interleave real

and imaginary parts of the complex symbols to be transmit-

ted over independent fading channels so that they encounter

different fading gains. At the receiver, they are de-interleaved

before decoding. Detailed discussion of CI has been given
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in [4], and the references therein, which shows that the per-

formance of CI technique depends on co-ordinate product dis-

tance (CPD) of the signal setA. Co-ordinate product distance
of A is defined as,

CPD(A) = min
u�=v∈A

|Re{u} − Re{v}||Im{u} − Re{v}| (8)

where Re{x} and Im{x} denote real and imaginary part of
x, respectively. CI achieves full diversity iff CPD(A) > 0.
This means that no two signal points in A can lie on a hor-
izontal or vertical line in the complex plane. This requires

standard constellations like M -QAM and M -PSK to be ro-
tated to make their CPD > 0. Each constellation has an
optimum angle of rotation θopt that maximizes its CPD and

for square lattice constellations θopt = 31.71750 [4]. In the

following discussion, we assume that the signal set A that we
use has maximum CPD.

4.2. CISM Algorithm

With CSI at both ends, we apply co-ordinate interleaving across

the symbols transmitted on different eigenmodes. Let x ∈
C

Nt×1 be the symbol vector to be transmitted, with xi ∈ A,
and let SVD(H) = UDVH .

• Interleave real and imaginary parts of xi to get x̃i, where,

x̃i = Re{xi} + jIm{xNt−(i−1)}, i = 1, . . . , Nt (9)

• Transmit s = Vx̃, where x̃ = [x̃1, x̃2, . . . , x̃Nt
]T

• Receive ỹ = Hs + n = UDx̃ + n.

• Left-multiply ỹ with UH to get z̃ = Dx̃ + w where

z̃ = UH ỹ and w = UHn. This results in,

z̃i =
√

λix̃i + wi, i = 1, . . . , Nt (10)

• De-interleave z̃i :

zi = Re{z̃i} + jIm{z̃Nt−(i−1)}, i = 1, . . . , Nt (11)

Substituting (10) and (9) in (11),

zi =
√

λiRe{xi} + j
√

λNt−(i−1)Im{xi}
+ Re{wi} + j Im{wNt−(i−1)} (12)

• Estimate xi :

x̂i = arg min
xi∈A

∣∣∣zi −
(√

λiRe{xi} + j
√

λNt−(i−1)Im{xi}
)∣∣∣

2

(13)

As can be seen from (10), the received signals gets decoupled

and hence can be decoded by single-symbol ML decoding

rule given by (13).

In-order to assess the performance of the proposed scheme,

we calculate SNR of each sub-stream. Let zi,s =
√

λiRe{xi}+

j
√

λNt−(i−1)Im{xi} denotes the signal component of zi and

zi,n = Re{wi} + j Im{wNt−(i−1)} denotes the noise com-
ponent. Average signal power in zi is

E[|zi,s|2] = λiE[(Re{xi})2] + λNt−(i−1)E[(Im{xi})2]
(14)

Assuming symmetric signal constellation,

E[(Re{xi})2] = E[(Im{xi})2] = E[|xi|2]/2. This implies,

E[|zi,s|2] =
λi + λNt−(i−1)E[|xi|2]

2
(15)

and the noise power in zi is

E[|zi,n|2] = E[(Re{wi})2] + E[
(
Im{wNt−(i−1)}

)2
]

=
σ2

n

2
+

σ2
n

2
= σ2

n (16)

Finally, from (15) and (16), we obtain,

SNRi,cism =
E[|zi,s|2]
E[|zi,n|2] =

λi + λNt−(i−1)

2

E[|xi|2]
σ2

n

(17)

Note that CISM needs only to knowV at the transmitter. We

can further reduce the amount of feedback by using efficient

quantization/encoding schemes for unitary matrices [9].

5. SIMULATION RESULTS

In this section, we evaluate the error rate performance of the

proposed scheme through simulations, using the systemmodel

given by (1). H is assumed to be constant over a block length

of Nt symbols and varies independently from block to block.

We use 4-QAM rotated by θopt = 31.71750 as the signaling

constellation. SNR’s for SVD, GMD and CISM schemes are

computed using (5), (7) and (17), respectively, ignoring the
E[|xi|

2]
σ2

n

term which is common in all the three expressions.

Fig. 1 compares the symbol error rate (SER) performance

of CISM, open-loop ML and GMD transceiver for a 2x2 SM

system. Slope of the SER curve of ML receiver corresponds

to second order diversity. Performance of the GMD transceiver,

which is close to that of ML receiver, also shows a diver-

sity order of two. As λ1 > λ2, second sub-channel in SVD

transceiver has lowest SNR i.e., SNRmin,svd = λ2. From

(7) and (17) we can compute that, SNRi,gmd =
√

λ1λ2, i =
1, 2, and SNR1,cism = SNR2,cism = λ1+λ2

2 . It is easy

to show that λ2 � √
λ1λ2 < λ1+λ2

2 . Hence CISM per-

forms significantly better than the other two schemes. Since

λ1+λ2 = tr{HHH} = |h11|2+|h12|2+|h21|2+|h22|2 [10],
CISM for 2 × 2 system achieves fourth order diversity.
Next we compare SER performance of the above men-

tioned schemes for a 3 × 3 system. Note that co-ordinate
interleaving on 3×3 system interleaves x1 with x3 and trans-

mits x2 without any change. From Fig. 2, we can observe

that CISM outperforms other schemes and slope of the curve,
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Fig. 1. SER comparison for 2×2 system with rotated 4-QAM

when compared to slope of the ML performance, indicates

that CISM achieves diversity order greater than three.

An increase in K(= rank(H)) will generally see a de-
crease in the least singular value

√
λK . Hence, SNRi,gmd,∀i,

which is proportional to the geometric mean of
√

λi’s (see

(6), (7)), decreases for MIMO channels of larger dimension.

Through simulations, by averaging over 105 channel realiza-

tions, we have observed that SNRmin,cism is greater than

SNRmin,gmd for all K, implying that CISM outperforms
GMD transceiver over MIMO channels for any Nt × Nr.

6. CONCLUSIONS

We have proposed a new spatial multiplexing scheme that ap-

plies co-ordinate interleaving across the symbols transmitted

on different eigenmodes of the MIMO channel. The proposed

co-ordinate interleaved spatial multiplexing scheme requires

the knowledge of the right singular vectors of the channel at

the transmitter while it needs to know singular values and left

singular vectors at the receiver. It was shown by deriving SNR

expressions that co-ordinate interleaving reduces the SNR im-

balance across different eigenmodes significantly. In CISM,

the minimum SNR over all streams is always higher than that

of other closed-loop schemes, resulting in an improved error

rate performance. Received symbol streams in CISM gets de-

coupled, enabling single-symbol ML decoding. Currently we

are investigating the usefulness of this technique for corre-

lated and/or Rician channels.
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