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ABSTRACT

In this paper, we continue our study of the performance of W-

CDMA Transmit Diversity (TD) that we started in [4]. We com-

pare the performance of two open-loop TD techniques for W-CDMA:

The Space Time Transmit Diversity (STTD) and the Orthogonal

Transmit Diversity (OTD). We use the output SINR provided by a

RAKE receiver when combined with each of these diversity tech-

niques. It is impossible to obtain useful conclusions about the

performance of the two techniques because the SINR depend in

a complex way on many parameters like the spreading codes, the

channel, etc. In order to obtain positive results, we follow the clas-

sical approach used for the first time in [5] and assume that the

spreading codes are random following a certain distribution. In

this case, the SINRs can be interpreted as random variables. We

consider the limit of the these SINRs when the spreading factor

N and the number of users K tend to ∞ with fixed ratio. Under

these conditions, the output SINRs can be shown to converge to

deterministic limits independent of the ”random” spreading codes.

We interpret the output SINRs and discuss the different parameters

influencing the performance of the two techniques.

1. INTRODUCTION

Third Generation (3G) mobile communication systems such as

cdma2000 and W-CDMA are intended to provide higher data rates

than current 2G systems. The performance of these systems de-

pend heavily on their ability to combat channel fading. Recently,

antenna diversity has proved to be one of the most effective ways

to combat channel fading. Multiple antennas at the receiver can

be used to provide diversity. The dilemma is that, in the down-

link, multiple antennas at the receiver induces an increase in the

size of the mobile unit, while significant effort is being done to

make wireless mobile devices smaller and cheaper. Alamouti [1]

has shown that the diversity provided by using two transmit anten-

nas and one receive antenna is the same as that provided by one

transmit antenna and two receive antennas. However, this result is

valid for flat fading channels only. The Alamouti scheme allows

to provide diversity without the need to include multiple antennas

at the receiver side.

There are two popular techniques of (open-loop) Transmit Di-

versity that have been adopted in W-CDMA and cdma2000 [2, 6].

The first one is the Space Time Transmit Diversity (STTD) based

on the Alamouti Space Time Block Code(STBC) that is applied to

the transmitted symbols after spreading. The second one is the Or-

thogonal Transmit Diversity (OTD) where two successive symbols

are transmitted simultaneously from two different antennas using

two orthogonal spreading codes derived from the spreading code

of the single antenna case. By looking at the output SINR in each

case, it is very difficult to compare the two techniques and draw

insights onto the parameters that affect the performance of each

one.

In this paper, we consider the performance of STTD and OTD

in the downlink of W-CDMA. We follow the classical approach

used for the first time in [5]. We assume that the spreading factor

N and the number of users K tend to +∞ at the same rate. The

spreading codes are supposed to coincide with Walsh Hadamard

codes scrambled by an Independent Identically Distributed (i.i.d)

sequence. In this context, the SINRs of the two receiver tend to de-

terministic limits independent of the scrambling and the spreading

codes. We derive the asymptotic SINRs, compare them and draw

some conclusions.

Notations: Throughout the paper, we denote by AH and AT

the conjugate and the transpose of A respectively. A denotes (AH)T .

A ⊗ B denotes the Kronecker product of A and B.

2. OPEN LOOP TRANSMIT DIVERSITY FOR W-CDMA

2.1. System Model

We consider a CDMA system with K users and a spreading

factor N . Let bk(m), k = 1...K, denote the transmitted symbol

of user k at time instant m. s(n) denotes the scrambling sequence

and d(n) the chip sequence.

The transmitted chip vector in one symbol period

d(m) =
�
d(mN), d(mN + 1), ..., d(mN + N − 1)

�T
is given

by:

d(m) = S(m)Cb(m) (1)

where S(m) is the N × N diagonal matrix whose diagonal ele-

ments are s(mN), s(mN + 1), ..., s(mN + N − 1) and C is a

N ×K matrix whose columns are the spreading codes assigned to

different users and b(m) = [b1(m), ..., bK(m)]T .

For both STTD and OTD , the sum chip signal (1) is transmitted

through two multipath frequency-selective fading channels whose
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impulse responses are given by

hi(t) =

P−1�
q=0

λi
qp(t − τ i

q) i = (1, 2) (2)

where p(t) is the total shaping filter (including the transmitter and

the receiver matched filters), λi
q and τ i

q are the complex gain and

the delay associated with path q of the channel between transmit

antenna i = (1, 2) and the receiver, and P is the total number of

resolvable paths. For the sake of simplicity we suppose that the

number of resolvable paths is the same for both channels.

2.2. Alamouti-based STTD

STTD uses a symbol-level Alamouti STBC. This is equivalent

to transmitting the chip vectors defined by equation 1 according to

Table. 1.

time m − 2 m − 1 m m + 1
Antenna

1 d(m − 2) d(m − 1) d(m) d(m + 1)
2 d∗(m − 1) −d∗(m − 2) d∗(m + 1) −d∗(m)

Table 1. The Alamouti STBC for W-CDMA

If we call the chips transmitted from antenna 1 d1(n) and the chips

transmitted from antenna 2 d2(n) then the chip-rate sampled re-

ceived signal is given by:

x(n) =

L−1�
l=1

h1,ld1(n − l) +

L−1�
l=1

h2,ld2(n − l) + v(n) (3)

where hi,l
�
=hi(t)|t=lTc , L is the overall channel length (in chip

periods) and v(n) is a centered white gaussian noise process with

variance σ2.

It is more convenient to express the model (3) in matrix form. By

concatenating the received signal in 2N chips we get:

�
x(m)

x(m + 1)

�
= HSTTD

0

�
d(m)

d(m + 1)

�
+ ISI +

�
v(m)

v(m + 1)

�
(4)

where HSTTD
0 =

�
H1,0 H2,0

−H2,0 H1,0

�
and Hi,0 is the

N × N classical band limited Toeplitz filtering matrix associated

with hi(z) (i = 1, 2). x(m) and v(m) are defined from x(n) and

v(n) as d(m) from d(n).

2.3. Orthogonal Transmit Diversity

In orthogonal transmit diversity, two successive symbols are

transmitted from different antennas using two orthogonal Walsh-

Hadamard codes. More precisely, if symbols b(m) and b(m + 1)
are to be transmitted using a length N spreading code c1. Then,

in the OTD scheme, the symbol b(m) is transmitted from antenna

1 using the 2N spreading code [c1 c1] while symbol b(m + 1) is

transmitted from antenna 2 using the 2N spreading code [c1− c1].
Note that the two 2N spreading codes are orthogonal whence the

name Orthogonal Transmit Diversity. The chips transmitted from

the two antennas in the case of OTD are shown in Table 2

time m − 2 m − 1 m m + 1
Antenna

1 d(m − 2) d(m − 2) d(m) d(m)
2 d(m − 1) −d(m − 1) d(m + 1) −d(m + 1)

Table 2. The Orthogonal Transmit Diversity Code for W-CDMA

The received signal in two symbol periods is given by:

�
x(m)

x(m + 1)

�
= HOTD

0

�
d(m)

d(m + 1)

�
+ ISI +

�
v(m)

v(m + 1)

�
, (5)

where HOTD
0 =

�
H1,0 H2,0

H1,0 −H2,0

�
.

3. ASYMPTOTIC ANALYSIS

As far as the asymptotic SINR is concerned, the ISI term can be

dropped in models (4) and (5) (see for example [3]). Furthermore,

we can replace the channel matrices H0,i by Hi given by

Hi =

�
���������

hi,0 0 hi,L−1 . . . hi,1

... hi,0

. . .
...

hi,L−1 hi,L−1

. . .
. . .

0 hi,L−1 hi,0

�
���������

It is more convenient to use the following equivalent model:

y = HCB + V (6)

where the quantities are defined as follows:

• In the case of STTD:

y = [x(mN+1) x∗((m+1)N+1)...x(mN+N) x∗((m+1)N+N)]T ,

H is a block Toeplitz matrix of the same structure as Hi whose

2 × 2 blocks are equal to

�
h1,l h2,l

−(h2,l)
∗ (h1,l)

∗

�
,

C = (S(m)C) ⊗ A1,1 + (S(m + 1)C) ⊗ A2,2

Ai,j stands for a 2 by 2 matrix whose entry (i, j) is equal to 1 and

all other entries are equal to zero,

B = [b1(m) b∗1(m+1) b2(m) b∗2(m+1)...bK(m) b∗K(m+1)]T .

• In the case of OTD:

y = [x(mN+1) x((m+1)N+1)...x(mN+N) x((m+1)N+N)]T ,

H is a block Toeplitz matrix of the same structure as Hi whose

2 × 2 blocks are equal to

�
h1,l h2,l

h1,l −h2,l

�
,

C = (S(m)C) ⊗ A1,1 + (S(m + 1)C) ⊗ A2,2

B = [b1(m) b1(m + 1) b2(m) b2(m + 1)...bK(m) bK(m + 1)]T
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For both cases V has the same structure as y. C can be inter-

preted as the overall code matrix. Note we have omitted the time

index as it is irrelevant.

We now give the output SINR associated to a RAKE receiver

when combined with STTD or OTD. The RAKE receiver is a

matched filter matched to the signature of the user of interest. Sup-

pose that we want to retrieve b1(m), that is the symbol transmitted

by user 1 at time instant m from antenna 1. Let C = [w1 U],
where w1 is the overall code of the user of interest and U repre-

sents the matrix of interferers codes.

The soft estimate of b1(m) is given by:

b̃1(m) = wH
1 HHy (7)

The SINR, that we index by the spreading factor, corresponding to

this receiver is given by :

β(N) =
|wH

1 HHHw1|2
wH

1 HH(HUUHHH + σ2I)Hw1

(8)

We will call β
(N)
OTD the SINR corresponding to OTD, while β

(N)
STTD

stands for the SINR corresponding to STTD. H is defined above

for each kind of transmit diversity.

If we suppose that the scrambling sequence is an i.i.d QPSk

symbol (a very realistic assumption), then β
(N)
OTD and β

(N)
STTD can

be interpreted as random variables. When N and K tend to ∞
while K

N
→ α, these random variables can be shown to converge

to deterministic limits that we will derive in the sequel.

3.1. Space Time Transmit Diversity

Let us define:

|h1(e
2iπf )|2 + |h2(e

2iπf )|2 =
�

k

Rhh(k)e−2iπf
(9)

X(e2iπf ) = h1(e
−2iπf )h2(e

2iπf ) − h2(e
−2iπf )h1(e

2iπf ) (10)

Theorem 1 Under the assumption that the
scrambling sequence is i.i.d with variance 1,
limN→∞, K

N
→α β

(N)
STTD → βSTTD given by:

βSTTD =
|Rhh(0)|2

α
�

k �=0 |Rhh(k)|2 + α
� 1

0
|X(e2iπf )|2df + σ2Rhh(0)

(11)

the convergence stands for the convergence in probability.

3.2. Orthogonal Transmit Diversity

Let us define:

|h1(e
2iπf )|2 =

�

k

Rh(k)e−2iπf
(12)

Theorem 2 Under the assumption that the
scrambling sequence is i.i.d with variance 1,
limN→∞, K

N
→α β

(N)
OTD → βOTD given by:

βOTD =
|Rh(0)|2

α
�

k �=0 |Rh(k)|2 + σ2

2
Rh(0)

(13)

3.3. Discussion of the two theorems

The two theorems are proved using large-random matrix analy-

sis as in [3, 5]. The proofs are omitted due to the lack of space.

The expression of βSTTD contains the desired term in the numer-

ator and three undesired terms in the denominator. The third term

stems from the effect of noise and will not be discussed. The first

undesired term α
��

k �=0 |Rhh(k)|2� is the classical Multi Access

Interference (MAI) due to the non-perfect nature of each chan-

nel separately. The second undesired term α
� 1

0
|X(e2iπf )|2df

is more interesting and can be interpreted as the Cross-Channel

Interference (CCI) due to the simultaneous use of two multipath

channels (see equation 10). In the case of single-path channels,

the first and the second term of the denominator vanish. On the

other hand, when there is no transmit diversity (i.e. h2(z) = 0),

part of the first term (α
�

k �=0 |Rhh(k)|2) will still be present (see

equation (9)), while the second term will vanish. The remark that

the CCI vanishes for single path channels was behind the origi-

nal Alamouti STBC proposed for single-user flat-fading channels

[1]. For multipath channels, however, the CCI can be very high,

and the STTD may deteriorate the performances when used with

a RAKE receiver. The MAI and CCI terms are both weighted by

the load factor α. This explains the fact that the SINR is higher for

lightly loaded systems and vice versa.

Concerning βOTD , we first mention that it depends only on

one channel (equation (12)). This means that asymptotically the

second channel does not have any effect (neither positive, nor neg-

ative) on the first channel and vice versa. This is a disadvantage

with respect to STTD since there is no (symbol-level) diversity

provided. On the other hand, we note that there is no second term

(CCI) in the denominator of βOTD . In the case of multipath chan-

nel, this is an advantage in favor of OTD since STTD suffers from

the interference created due to the use of two non-ideal channels.

We note also that the SINR provided by OTD is the same as that

provided by the no Transmit Diversity case where the power is

doubled (whence the term σ2

2
Rh(0)). This means that there is

no symbol-level diversity (before decoding) [6]. the diversity ob-

tained is seen only after including deinterleaving and Viterbi de-

coding.

As a general conclusion, we note that OTD provides no (symbol-

level) diversity since the denominator depends on one channel only

but does not suffer from the CCI. The STTD, on the other hand,

provides diversity as the denominator of βSTTD depends on both

channels but suffers from CCI that is created due to the simulta-

neous use of these channels. For ideal and moderate multipath

channels, we expect STTD to provide a better performance while

for severe multipath channels OTD is expected to perform better.

4. SIMULATION RESULTS

We verify that our asymptotic analysis allows to predict the per-

formance of W-CDMA with finite spreading factors. We have im-

plemented the physical layer of the downlink of the UMTS-FDD,

and we have compared the measured (empirical) raw (without cod-

ing nor interleaving) Bit Error Rate (BER) obtained for N = 32
and K = 16 with its asymptotic evaluation given by Q(

√
βSTTD)

and Q(
√

βOTD). The results are presented in Figure 1. The prop-

agation channel is a three path channel with the following profile

[1 0 0.2 0 0.1] (every two symbols a different realization of
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the channel is generated). It is noteworthy that the receiver we

implemented is based on the correct model (3), thus showing that

the approximation (6) (dropping the ISI term) is justified in this

context. Figure 1 shows that our asymptotic evaluations allow to

predict rather accurately the BER performance for N = 32 (The

fit is even better for higher values of N ).

2 4 6 8 10 12 14 16 18 20 22
10

−3

10
−2

10
−1

SINR per User

B
E

R

OTD empirical
OTD asymptotic
STTD empirical
STTD asymptotic

Fig. 1. Comparison of empirical and theoretical BER

In order to have a better understanding of the performance of

both schemes, we consider a system with α = 0.5 and a SNR of

10 dB. We study the BER performance in the asymptotic regime

as a function of the channels. Each propagation channel is taken to

be a two path channel. The two paths are spaced by one chip. We

vary the (average) amplitude of the second path with respect to the

first starting from a single path (when the second path amplitude

is equal to zero) to two equal power paths (when the second path

amplitude is equal to 1). We note that when the amplitude of the

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

Amplitude of the second path

B
E

R

otd
sttd

Fig. 2. Effect of the channel on STTD & OTD Performance.

second path is small with respect to the first path, STTD performs

much better than OTD. This is due to the diversity provided by

the term in the numerator of βSTTD . The STTD does not suffer

from Cross Channel Interference (CCI) since it is very weak (or

even null for a single path channel). On the other hand, for a two

(equal) path channel, OTD is slightly better than STTD because

OTD does not suffer from CCI. The STTD provides diversity (nu-

merator) but suffers from two much CCI (denominator). The effect

of the two phenomena makes it worse than OTD which does not

provide (symbol-level) diversity but does not suffer from CCI.

5. CONCLUSION.

In this paper, we have addressed the performance of Space Time

Transmit Diversity and Orthogonal Transmit Diversity in the down-

link of W-CDMA over frequency-selective fading channels. We

have derived asymptotic expressions of the SINR provided by a

RAKE receiver when coupled with each technique. The asymp-

totic expressions are derived by assuming an i.i.d scrambling code

and by letting the number of users K and the spreading factor N
tend to infinity with fixed ratio. We concluded that Orthogonal

Transmit Diversity does not provide any symbol-level diversity.

This means that we only observe an improvement over a single-

transmit antenna if we use deinterleaving and Viterbi decoding. On

the other hand, Space Time Transmit Diversity provides symbol

level diversity but suffers for simultaneous use of two multipath

channels. Simulation results show that our asymptotic expressions

allow to predict the performance of UMTS-FDD for N = 32.

We have noticed that for moderate channels, STTD gives a better

performance while for severe frequency selective channels OTD

performs better.

6. REFERENCES

[1] S. Alamouti, ”A simple transmit diversity technique for wire-

less communications ”, IEEE Journal on Selected Areas in
communications , vol. 16. No. 8, pp 1451-1458,Oct 1998.

[2] 3GPP TSG RAN, “Physical channels and mapping of trans-

port channels onto physical channels, Rel’5” Tech. Spec. 3G

TS 25.211, Version 5.5.0 3GPP, Sep 2003.

[3] J.M. Chaufray, W. Hachem, Ph. Loubaton, ”Asymptotic

analysis of optimum and sub-optimum CDMA downlink

MMSE receivers”, IEEE Trans. Inform. Theory, Volume 50,
Issue 11, Nov. 2004.

[4] B. Mouhouche, Ph. Loubaton, K. Abed-Meraim and N.

Ibrahim, “On the Performance of Space Time Transmit Di-

versity for CDMA Downlink with and without equaliza-

tion,” In Proc. International Conference on Acoustics Speech
and Signal Processing (ICASSP’05), Philadelphia, PA, USA.

March 2005.

[5] D.N.C Tse and S. Hanly, ”Linear Multi-User Receiver: Ef-

fective Interference, Effective Bandwidth and User Capac-

ity”, IEEE Trans. on Information Theory, vol. 45, no. 2, pp.

641–657, February 1999.

[6] R. A. Soni and R. M. Buehrer, ”On the Performance of Open-

Loop Transmit Diversity Techniques for IS2000 Systems: A

Comparative Study”, IEEE Trans. on Wireless Comm., vol.

3, no. 5, Sep 2004.

IV  732


