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ABSTRACT

This work proposes a new partial update filtering technique tailored
for adaptive transmit beamforming with low feedback rate. A signal
dependent selection rule is derived that singles out one component
of the beamforming vector to be updated. This provides an efficient
way to perform the update, which escalates the performance with the
number of available feedback bits without increasing the computa-
tional complexity. An operation count for the proposed algorithm
and existing solutions is provided. Simulations show that the pro-
posed scheme outperforms the tracking capabilities of existing code-
book solutions in low mobility scenarios, while having comparable
bit error probability performance and a computational complexity
reduction of 90%.

1. INTRODUCTION

In this paper we consider systems employing adaptive transmit beam-
forming with low feedback rate and a single receive antenna. The
goal of the transmitter is to adapt the transmission on each of its an-
tennas in order to maximize the received signal power. However, it
can only rely on limited information fed back by the receiver. This
setup is appropriate for wireless communications when the channel
does not have any long-term structure, e.g., in non line of sight sce-
narios where received signals may have large angular spreads.

The limited number of available feedback bits prevents a solu-
tion where the receiver signals back an accurate (i.e., high preci-
sion) estimate of the optimal beamforming vector to the transmitter.
As a consequence, alternative methods like signed-gradient [1][2][3]
and codebook [4] solutions have been proposed. However, the com-
putational complexity of these solutions grows exponentially with
the number of feedback bits employed (codebook size or number of
stochastic search directions).

In order to lower the computational complexity associated with
the search for an update to the complete beamforming vector, we
employ a signal dependent criterion to choose one coefficient that
is to be updated. Our idea stems from that of partial update (PU)
adaptive filters, and allows to approach the performance of the full
vector update at a lower computational complexity cost.

The idea of PU has been applied to various adaptive filtering ap-
plications [5][6][7], where one (in general a reduced group) of the
filter coefficients is updated in order to decrease the computational
complexity. However, the transmit beamforming application consid-
ered in this paper differs from those in [5][6][7], and therefore it is
not possible to apply the conventional PU concept directly.
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In this paper we extend the PU ideas to enable a distributed up-
dating scheme for transmit beamforming. We consider a signal de-
pendent coefficient selection criterion that increases the adaptation
capabilities of the algorithm when compared with a trivial round
robin update, at the expense of some feedback overhead. Our pro-
posed formulation indeed extends the PU principles to a different
setup: the system under consideration is distributed, as opposed to
those of [6][7] where the optimal filter coefficients are not available.
Furthermore, only the receiver has access to the optimum solution
and informs the transmitter which coefficient to update and how to
do it. While [6][7] conclude that the coefficient to be updated is the
one associated to the strongest input, our system equations lead to
the idea that the one with the largest combination of error and chan-
nel power must be updated (note that the channel power would not
be available in [6][7]).

2. SYSTEM MODEL

Our system consists of a transmitter equipped with N antennas and
a single-antenna receiver. The receiver sends messages of nb bits
during each block of L channel samples. Let k denote the sample
index and l the block index. The available signal at the receiver is:

y(k) = x(k)h(k)w(l) + n(k) (1)

where x(k) is the complex-valued symbol sent at sample time k,
chosen independently of the rest of the variables, h(k) = [h1(k) . . .
hN (k)]∈ C

1×N is the channel vector, w(l) = [w1(l) . . . wN (l)]T ∈
C

N is the transmit filter or beamforming vector subject to a normal-
ized total transmit power constraint ||w(l)|| = 1, and n ∈ C, n ∼
N (0, σ2) is the additive noise at the receiver.

The goal of the transmit beamformer is to maximize the instan-
taneous received signal-to-noise ratio (SNR). However, w can only
be updated once per block, based on the feedback information. Due
to an inherent delay in the feedback channel, the adaptation of w is
forced to be based on the feedback message produced in the previous
block. Thus, the cost function is written in terms of the last channel
sample of the previous block:

J(w,h) = |h(lL − 1)w(l)|2 (2)

Note that the value of w(l) needs to be known to transmitter and
receiver simultaneously.

The optimal w(l) maximizing (2) is uδ(l) = ejδ h(lL − 1)†/
||h(lL − 1)||, where † denotes Hermitian transpose and δ is an ar-
bitrary phase rotation. We choose δ so that the first component of
uδ(l) is real-valued, and thus the optimal solution is:

v(l) = ej∠h1(lL−1) h(lL − 1)†

||h(lL − 1)|| (3)
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where ∠(·) is the argument function.
We are interested in systems where the number of feedback bits

nb is small compared to the number of bits required to quantize the
optimal beamforming vector. That is, if nq bits are employed for
quantizing each of the N components of the optimal filter, we as-
sume nb � nqN . The next section proposes a novel solution that
approaches (3) with a limited number of bits nb.

3. THE PARTIAL UPDATE BEAMFORMING (PUB)
ALGORITHM

This section proposes a partial update beamformer (PUB), which
adjusts a single antenna weight at each update instant. The update
made at the transmitter side is based on the information available
at the receiver and transmitted through a low-rate feedback channel,
assumed error free. In the following subsections we first consider
a coefficient selection criterion, tailored for the application at hand,
that singles out which beamformer weight to update. Thereafter, the
coefficient update strategy and the structure of the feedback message
are discussed. Finally, a discussion on the computational complex-
ity of the proposed scheme is provided, and compared to that of an
existing solution based on vector quantization.

3.1. Coefficient selection rule

At any given update instance, the idea is to update a single coefficient
of the vector to reduce the overall complexity and the length of the
feedback message. The simplest scheme is to use a fixed sequence
to determine which coefficients to update each block. However, this
does not guarantee that the partial update is optimal, in the sense of
maximizing the cost function. For moderate values of N , this is not
a big problem if the coefficients of h evolve slowly and at a similar
rate. The hi will have similar variation rates if there is correlation
between them, which may be due to insufficient antenna spacing or
lack of scatterers in the propagation environment. On the other hand,
they will evolve slowly if the Doppler frequency is small (e.g., due to
the receiver moving at low speeds). In all other cases it is beneficial
to update the coefficient that produces the largest decrease in error
as will be shown below.

Consider the error of the received signal:

e(k) = yopt(k) − y(k) = x(k)h(k)[v(l) − w(l)]

= x(k)
NX

i=1

hi(k)[vi(l) − wi(l)]
(4)

Note that the coefficient-error terms in (4) are weighted by the
channel magnitudes. Applying the triangular inequality bound in (4),
we get

|e(k)| ≤ |x(k)|
NX

i=1

|hi(k)||vi(l) − wi(l)| (5)

As can be seen from (5), the bound is made up from one contri-
bution per weight. Therefore, if only a subset of the N weights can
be modified at the update instance, the best choices for reducing the
error are those weights associated to the dominant terms in (5).

Consequently, the component wa to be updated is the one asso-
ciated with the index a obtained from

a = argmax
i

˘|hi(lL − 1)|2|vi(l) − wi(l)|2
¯

(6)

where the last sample of the block is used to make the decision.

Approaching the problem from a different point of view, we can
also consider the gradient of |e(k)|2. For a given weight wm(l) we
have

∂|e(k)|2
∂w∗

m(l)
= |x(k)|2hm(k)

NX
i=1

[wi(l) − vi(l)]
∗h∗

i (k) (7)

It can be seen from (7) that the gradient is proportional to the
term

PN
i=1[wi(l) − vi(l)]

∗h∗
i (k). Therefore, reducing this sum

through the update of the chosen weight makes the gradient uni-
formly smaller. Applying the triangular inequality leads us to (6).

We note that the selection criterion is different than the existing
M-Max criterion [6], where the coefficient to be updated corresponds
to the input with the largest power. In this case, it would mean ad-
justing wa with a = argmaxi(|hi|), regardless of the difference
between wa and its optimum value. This is due to the fact that the
optimum values are not available in the M-Max setup.

3.2. Single coefficient update

There are two approaches for updating the chosen coefficient. The
first one is recursive, where the new value is computed based on the
previous value and the feedback message. The second approach is
non-recursive and computes a new value, disregarding the previous
value. The signed gradient [1] algorithm implements recursive up-
date by perturbing all the weights simultaneously. The codebook
solutions [4] produce a non-recursive update to all the coefficients
at the same time. We propose a non-recursive scheme for a single
coefficient by quantizing the magnitude and phase separately, and
sending the indexes of the quantized quantities as part of the feed-
back message. The update is given by

wa(l + 1) = Qρ {|va(l)|} ejQφ{∠va(l)} (8)

where Qq {·} denotes scalar uniform quantization with q bits. Note
that the first weight will use φ + ρ bits for quantizing the magnitude
and will not be updated in phase, as we have chosen it to be real-
valued, see (3).

Due to the norm-one constraint of vector w, updating the magni-
tude of one element will affect all the other magnitudes. We propose
to update |wi�=a(l+1)| after applying (8), by scaling the correspond-
ing magnitudes and distributing the “remaining norm” according to
the allocations prior to the update. In other words, we get:

|wi(l + 1)|2 =
1 − |wa(l + 1)|2

1 − |wa(l)|2 |wi(l)|2 ∀i �= a (9)

It can be verified that the norm constraint ||w|| = 1 is satisfied after
the update of (8) and the scalings of (9) have taken place.

3.3. Feedback message structure

In this section we describe the structure of the feedback message
with which the transmitter updates its beamforming vector. Let ρ
and φ be the number of bits used to quantize the squared magnitude
(power) and phase of va(l), for a > 1. For a = 1, ρ + φ bits are
used for power only, as w1 is always real-valued. We denote the sets

of quantized values as M = {pi}2ρ

i=1, A = {θi}2φ

i=1 and M1 =

{p′
i}2ρ+φ

i=1 . Further, assume that the indexes of the quantized values
are r, s and t, i.e., Qρ {|va>1(l)|} = pr ∈ M, Qφ {∠va>1(l)} =
θs ∈ A and Qρ+φ {|v1(l)|} = p′

t ∈ M1.
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The PUB feedback message is then defined:

bR−PUB(l + 1) =

j
[B(a) B(r) B(s)] a > 1
[B(a) B(t)] a = 1

(10)

where b(l + 1) is the feedback message that will be used by the
transmitter at block l+1,B(·) denotes the binary representation of an
integer, and R-PUB refers to the PUB algorithm that uses the ranking
function in (6), as opposed to the sequential counterpart, denoted S-
PUB hereafter, for which the weights are updated in a round robin
fashion. If nb is the same for ranked and sequential versions, the
number of bits used for phase and power must be different, since S-
PUB does not signal the index a. Thus φ+ρ = nb for S-PUB, while
�log2(N)� + φ + ρ = nb for R-PUB.

Note that the S-PUB is just a natural extension of the standard
WCDMA closed loop modes [8], and is defined here for comparison
purposes only. In the following, the acronyms PUB and R-PUB are
used interchangeably.

The signaling overhead associated with the index a decreases the
available bits for quantization by �log2(N)�. However, in some sce-
narios this loss is compensated by the faster adaptation capabilities,
resulting in net performance gains. This is illustrated in Section 4.
Methods for eliminating the feedback overhead are under investiga-
tion.

3.4. Computational Complexity

In this section we give an operation count for the PUB algorithm, as-
suming that the elements of the channel are known in polar form. At
a given block index l, the optimal vector v(l) is built from h(lL−1),
the ranking function of (6) is computed for each weight, the optimal
squared modulus and phase are determined and quantized, and the
respective indexes are obtained. Finally, the scaling factor of (9) is
computed and applied to the other weights. The updated magnitude
is computed from the quantized optimal squared modulus.

Let OR−PUB, OS−PUB and OCBBF be the number of real oper-
ations required by R-PUB, S-PUB and the codebook beamforming
algorithm [4] (CBBF). Discarding the conversion from integer to bi-
nary necessary to build b(l), the operation count is

OR−PUB = 10N r.m. + (5N + 2) r.a. + 2 r.d. + 2 sqrt

OS−PUB = (3N − 5) r.m. + 2N r.a. + 2 r.d. + 2 sqrt

OCBBF = 2nb [(3N + 2) r.m. + (3N − 1) r.a.]

(11)

where r.m., r.a., r.d. and sqrt denote real-valued multiplications, ad-
ditions, divisions and square roots, respectively. Note that OCBBF is
based on choosing the vector that maximizes the cost function in (2),
which is not always the one with minimum Euclidean distance to the
optimal vector v(l). We have neglected the cost of finding the max-
imum among the candidate values of the cost function in (2).

Thus, the PUB algorithm has complexity O(N) regardless the
value of nb. In contrast, CBBF results in complexity O(N2nb ). For
example, at nb = 6, OR−PUB = 0.016OCBBF . Furthermore, for
N = 4 transmit antennas, the ratio of operation counts (discard-
ing the 2 roots and 2 divisions) is OR−PUB/OCBBF = 62/1600 ≈
0.039, and we can say that in this scenario the PUB algorithm achieves
a complexity reduction of about 90%.

4. SIMULATIONS

The performance of the PUB algorithm was evaluated in a system
consisting of N = 4 transmit antennas and one receive antenna. For

comparison purposes, the codebook solution of size 64 (nb = 6)
proposed in [4] was implemented, based on the vectors made pub-
licly available by one of the authors. Note that single bit algorithms
like [1] require to be extended to bit rates (per block) higher than one
and have thus been excluded from the simulations.

The channel was modeled as Rayleigh fading with propagation
paths spatially correlated according to the covariance matrix R spec-
ified in [9] for λ/2 antenna spacing and 3GPP cases 1 (uncorrelated),
2 and 4. Three different environments were evaluated with the asso-
ciated condition numbers of R given by κ = λmax/λmin(R) = 1,
7537 and 37, respectively. The carrier frequency used was fc = 2.1
GHz. Each transmitted block contained L = 160 QPSK modulated
symbols, and the transmit beamformer was updated at the end of
each block. The channel is sampled L times per block.

The uncorrelated scenario produces the vector which is the most
difficult to track, due to abrupt phase changes of the hi(l) (up to 1
radian even at low speeds). As correlation increases, the changes
from h(l) to h(l + 1) become smoother, resulting in better tracking
performance.

Figure 1 shows the upper bounds for the mean cost function
that can be obtained using the PUB algorithm, when the speed was
ramped from 3 to 70 km/h. The bounds were obtained by using the
true weights at the transmitter side, i.e., wa(l + 1) = va(l). As
can be seen from the figures, the coefficient selection in (6) becomes
important at speeds higher or equal than 30 km/h.
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Fig. 1. Performance bound of the PUB algorithm for different cor-
relation scenarios, as function of mobile speed.

The performance of the PUB algorithm improves with the num-
ber of available feedback bits, without increasing the computational
complexity. Figure 2 shows the performance increase of the PUB
algorithm when increasing nb from 6 to 8 (1 for power and 3 for
phase, to 2 for power and 4 for phase). Note that the phase reso-
lution is more important than that of the square magnitude (power).
For example, when using R-PUB and nb = 6, N = 4, assigning
1 bit for power and 3 bits for phase quantization outperforms the
same scheme with 2 and 2 bits (recall that the signaling overhead
associated to a takes 2 bits because N = 4).

Figure 2 shows the performance of the R-PUB algorithm com-
pared to that of CBBF, both at the same feedback rate of nb = 6.
The PUB algorithm outperforms CBBF in tracking performance, up
to speeds of 30 km/h in uncorrelated channels.

It should be noted that at low mobile speeds, the feedback bits
reserved to signal the selected coefficient might be better employed
increasing the quantization resolution, at least for moderate sizes of
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Fig. 2. Tracking performance comparison of R-PUB and CBBF for
feedback rate of nb = 6, plus performance of R-PUB with nb = 8
(2+4). “p+q” refers to bits assigned to power and phase, respectively

N such as 4 or 8. Thus, the S-PUB algorithm could outperform the
R-PUB algorithm at very low speeds, and a mechanism for switching
between them would be required if the speeds are allowed to change.
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Fig. 3. BEP for PUB algorithm and codebook solution in uncor-
related channels, at Eb/N0=7 dB. “p+q” refers to bits assigned to
power and phase, respectively

The BEP curves for selected configurations are shown in Fig-
ure 4. It can be seen that at 10 km/h, both R-PUB and CBBF perform
about the same when nb = 6. However, CBBF performs better at 30
km/h and more, but with a much higher computational complexity,
as detailed in Section 3.4. Note that CBBF shows almost the same
performance for the considered speed range. The performance in-
crease of the R-PUB algorithm due to the addition of 2 bits is shown
in Figure 3.

5. CONCLUSIONS

This paper proposed a distributed partial update adaptive filtering
scheme suitable for transmit beamforming with low feedback rate.
The proposed algorithm features a low complexity update that adapts
one coefficient at the time based on a signal dependent selection
function. This formulation extends the existing partial update adap-
tive filtering techniques to a distributed system setup where the op-

BEP with N = 4, uncorrelated channels, nb = 6
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Fig. 4. BEP for PUB algorithm and codebook solution in uncorre-
lated channels, with nb = 6. “p+q” refers to bits assigned to power
and phase, respectively

timum filter is known at one end, and must be conveyed to the other
end under severe rate restrictions. The complexity is linear with the
size of the filter only and does not depend on the feedback rate,
which contrasts with existing codebook solutions. Simulations for
slowly fading uncorrelated channels show that the PUB has better
tracking performance, similar BEP performance, and reduced com-
plexity when comparing to existing codebook techniques [4].

6. REFERENCES

[1] B. C. Banister and J. R. Zeidler, “A simple gradient sign al-
gorithm for transmit antenna weight adaptation with feedback,”
IEEE Trans. Signal Processing, vol. 51, no. 5, pp. 1156–1171,
May 2003.

[2] B. Raghothaman, “Deterministic perturbation gradient approxi-
mation for transmission subspace tracking in FDD-CDMA,” in
Proc. IEEE ICC, vol. 4, Anchorage, May 2003, pp. 2450–2454.

[3] E. Zacarı́as B., R. Wichman, and S. Werner, “Filtered gradient
algorithm for closed loop MIMO systems,” in Proc. IEEE VTC-
Spring, Stockholm, May 2005.

[4] D. J. Love, R. W. Heath Jr., and T. Strohmer, “Grassmannian
beamforming for multiple-input multiple-output wireless sys-
tems,” IEEE Trans. Inform. Theory, vol. 49, pp. 2735–2747, Oc-
tober 2003.

[5] S. C. Douglas, “A family of normalized LMS algorithms,” IEEE
Signal Processing Lett., vol. 1, no. 3, pp. 49–51, March 1994.

[6] T. Aboulnasr and K. Mayyas, “Selective coefficient update of
gradient-based adaptive algorithms,” in Proc. IEEE ICASSP,
vol. 3, Munich, April 1997, pp. 1929 – 1932.

[7] S. Werner, M. de Campos, and P. Diniz, “Partial-update NLMS
algorithms with data selective updating,” IEEE Trans. Signal
Processing, vol. 52, no. 4, pp. 938– 949, April 2004.

[8] 3GPP RAN WG1, “Technical specification TS25.202: Physical
layer - general description,” 3GPP, available at www.3gpp.org,
Tech. Rep., 2002.

[9] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen,
and F. Frederiksen, “A stochastic MIMO radio channel model
with experimental validation,” IEEE J. Select. Areas Commun.,
vol. 20, no. 6, pp. 1211–1226, August 2002.

IV  724


