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ABSTRACT

We design an optimum modulator for the Costa (dirty-paper) precod-
ing problem under the constraint of a binary signaling alphabet, and
assuming the interference symbols belong to a binary constellation.
We evaluate the performance of our technique in terms of the mu-
tual information between the channel input and output, and compare
it to that of Tomlinson-Harashima precoding (THP) with optimized
parameters. We show that our optimal modulator is always better
than THP. In many relevant scenarios, the performance difference is
significant.

1. INTRODUCTION

Costa showed in his 1983 paper [1] that the achievable rates of a
communication channel remain unchanged if the receiver observes
the transmitted signal in the presence of additive interference, pro-
vided that the transmitter knows the interference non-causally. More
precisely, consider the setup in Figure 1, and suppose the interfer-
ence z(t) and the noise n(t) are Gaussian. Then, if the transmitter
has non-causal access to z(t), the capacity of the channel from “TX”
to “RX” is the same as it would be if z(t) were not present (under
the same transmit power constraint).

The problem of designing a transmitter which achieves the chan-
nel capacity in the presence of z(t) is often called the “Costa (pre-
coding) problem” or “dirty paper” coding problem (after the title
of [1]). This problem is important because the known-interference
scenario arises in a number of contexts, notably, when doing precod-
ing for ISI channels and for the downlink multiuser MIMO chan-
nel [2, 3]. Consequently the problem has stimulated much research.
Essentially, the strategy for achieving capacity is known (it is pre-
cisely the constructive proof in [1]; see also [4]): First quantize z(t)
into a number of bins (this is essentially a source coding problem).
Then, depending on what bin z(t) falls into, choose an appropri-
ate code for the encoding of w(t). The best Costa-precoding results
known to us [5,6] are based on this approach. For example, [5] uses
a turbo-trellis code for the quantization of z(t), and another turbo
code for the encoding of w(t).

References [5, 6] in fact, impressively, demonstrate the (near)
achievability of Costa’s prediction. The downside of the approach
therein, however, is complexity. In this light, it is natural to ask
what one can do about the Costa problem when permitted to add no,
or very little, extra complexity to the system compared to “classi-
cal” transmission. The goal of this paper is to shed some light on
this question. More precisely, we consider the design of an optimal
one-dimensional1 scheme which maps a binary input bit i = {0, 1}
and a binary interference symbol z = ±β, β ∈ R (known to the
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1Extension to inphase/quadrature (narrowband) modulation, or to other
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Fig. 1. System model.

transmitter but not to the receiver) onto an output symbol x ∈ R.
Thereby, strictly speaking, our focus is on modulation rather than on
coding. The goal of our work is to obtain an understanding for what
one can achieve in small (or a single) dimensions and at low com-
plexity, rather than to achieve capacity. (Indeed achieving capacity
is impossible with finite-dimensional precoding.)

We are not aware of any previous work that systematically treats
the Costa problem in small (or a single) dimensions. We remark,
however, that a special case of the one-dimensional precoding struc-
ture we propose here (and which we also take as a benchmark) is the
Tomlinson-Harashima precoder (THP), originally proposed for ISI
channels [7, 8]. THP takes x = (w − z) mod Λ, where w = w(i)
is a function of i and Λ is a constant. Both w(i) and Λ can be opti-
mized, see below. In this context also note [9] addressing a related
problem, however without optimization over w(i) or Λ.

2. SYSTEM MODEL

Consider Figure 1. From now on, we consider a discrete, one-
dimensional, channel so all quantities are real-valued and scalar.
(We omit the time index t for simplicity of notation.) The modu-
lator maps an information symbol index i ∈ Z and an interference
symbol z ∈ R onto a modulated symbol x ∈ R. Expressing the
(nonlinear) modulator mapping as x = x(i, z) we can write

y = x(i, z) + z + n (1)

where z is the interference symbol (known to transmitter), and n is
noise. The receiver does not know z, however, we shall assume that
it knows the probability distribution of z, say pz(u). (This assump-
tion is weak if z is drawn from a stationary and ergodic process.)

We assume that the noise is Gaussian: n ∼ N(0, σ2) where σ2

is known. Also, we shall treat only here the special case when i and
z are discrete, binary random variables (over Z and R, respectively)
as follows:

P (i = 0) = P (i = 1) = 1/2 (2)

P (z = −β) = P (z = β) = 1/2 (3)

orthogonal multiplexing formats is immediate by treating each dimension
independently. See also Section 6.
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That is, the input alphabet is binary (i = 0, 1) and the interfer-
ence comes from a scaled BPSK constellation z = ±β. Also, all
combinations of i, z are equally likely. Further, we assume that the
available transmit power is P , i.e., the modulator operates under the
constraint E[x2] ≤ P .

3. STATE-OF-THE-ART (IN ONE DIMENSION)

We first present some baseline strategies for the problem in Figure 1.
No interference. If there is no interference (z = β = 0) then

taking x = ±√
P (say, x(i) = (2i − 1)

√
P ) is the best we can

do, with a binary alphabet and subject to the power constraint. The
optimal receiver (in the minimum error-probability sense) is the one
that maximizes the a posteriori probability of i when y is received:

îMAP = argmax
i

P (i|y) = argmin
i

|y − (2i − 1)
√

P |

No interference cancellation. If the transmitter does not know
the interference, but the receiver knows pz(u) (an assumption we do
make throughout the paper) then we may take, say, x(i) = (2i−1)α

for some constant α. Note that, α =
√

P “works” (in the sense that
the power constraint is satisfied). However, this choice of α is not
necessarily optimal. In our comparisons, we choose the value of α
(subject to α ≤ √

P ) which maximizes performance. The optimal
receiver is

îMAP = argmax
i

py(y|i) = argmax
i

p(z+n)(y − (2i − 1)α)

where pz+n(u) is the convolution of pz(u) and pn(u).
Interference subtraction. Arguably the transmitter could can-

cel z by taking x = (2i − 1)α − z. However, since we must have
E[x2] = α2 +β2 ≤ P , doing so would work only if β2 < P . Also,
even under this rather strong condition, i.e., weak interference, it is
not optimal. This technique therefore is not a meaningful baseline
for comparison.

Tomlinson-Harashima Precoding [7, 8]. This fits into our
framework by setting w(i) = (2i − 1)α for some constant α and
then taking

x = (w − z) mod Λ (4)

so that,

y = ((w − z) mod Λ) + z + n = w + kΛ + n = w + e

where k is an integer which depends on i and where we defined
e = kΛ + n (e also depends on i).2

For us, the purpose of introducing THP is only to have a good
baseline for comparison. (A more specific motivation is that THP
has been proposed for the downlink MIMO problem [10,11].) How-
ever, as a byproduct of our work we also obtained the optimal re-
ceiver for THP (an explicit derivation of which we were unable to
pinpoint in the literature). The optimal receiver (see the next para-
graph) differs from the heuristic (and suboptimal) detector

îsubopt = argmin
i

|(y mod Λ) − w|

which is usually used in papers dealing with THP. The difference in
performance between the two receivers, however, is usually not large
except for “unlucky” choices of α, Λ.

2Conditioning on i is equivalent to conditioning on w(i), a fact we will
use repeatedly.

To find the optimal receiver for THP, first note that k has the
conditional distribution in (5), at the top of the next page. In (5),
Fz(t) = P (z ≤ t) is the cumulative distribution function of z.3

Thus py|i(y) =
P∞

κ=−∞ P (k = κ|w)pn(y − w(i) − κΛ). The
optimal receiver is

îMAP = argmax
i

∞X
κ=−∞

P (k = κ|w) exp

„
− 1

2σ2
(y − w(i) − κΛ)2

«

(6)
In practice the sum in (6) can be truncated to a few terms.

The parameters α and Λ in THP can be optimized, subject to the
power constraint E[x2] ≤ P . We do not dwell into this optimiza-
tion, as it is not the focus of the paper. In fact, this can be done as
a special instance of our optimal modulator (enforcing an additional
constraint in the optimization), which we present next.

4. DESIGN OF AN OPTIMUM MODULATOR FOR
INTERFERENCE AVOIDANCE

As criterion for optimization of the modulator mapping x = x(i, z),
we will use the mutual information I(y; i) between i and y, under the
constraints presented in Section 2. This quantity is relevant at least
if Figure 1 is thought of as an inner “code” and additional coding is
used outside. (This would be the case in most real systems, anyway.)

The mutual information I(y; i) can be written as in (7), see the
top of the next page. In (7), we used that

R ∞
−∞ py(y|i)dy = 1, ∀i.

Also, in (7),

py(y|i) = py(y|i, z = −β)P (z = −β)+py(y|i, z = β)P (z = β)
(8)

=
1

2
(py(y|i, z = −β) + py(y|i, z = β))

where

py(y|i, z) =
1√

2πσ2
e−(y−z−x(i,z))2/(2σ2)

In practice, I(y; i) can easily be computed by Monte-Carlo integra-
tion. Naturally py(y|w) (and I(y; i)) depend on the specific modu-
lator mapping x(i, z) used. We shall select the mapping x = x(i, z)
which maximizes I(y; i).

Under the assumptions of Section 2, there are four combinations
of i and z, so we can write

x(i = 0, z = −β) �a0

x(i = 0, z = β) �a1

x(i = 1, z = −β) �a2

x(i = 1, z = β) �a3

(9)

By symmetry (z and n have symmetric densities), we must have
x ∈ {−a,−b, b, a} for some positive constants a, b. The problem
is then to find a, b and to map a0, ..., a3 onto the set {−a,−b, b, a}.
With no constraint on the ordering of a and b, there are 4! = 24
possibilities, of which 12 are redundant (because a and b are not
ordered). The set of possible mappings to be considered therefore is

a0 = −a, a1 = −b, a2 = a, a3 = b

a0 = −b, a1 = −a, a2 = a, a3 = b

a0 = −a, a1 = b, a2 = −b, a3 = a

a0 = −b, a1 = b, a2 = −a, a3 = a

a0 = a, a1 = −a, a2 = −b, a3 = b

(10)

3Note that (5) does not require i and z to be binary. Therefore this equa-
tion is valid also for a more general scenario than that defined in Section 2.
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P (k = κ|i) = P (k|w) = P ((w − z) mod Λ − (w − z) = κΛ |w)

= P (w − z ∈ [−(κ + 1/2)Λ,−(κ − 1/2)Λ] |w)

= P (w + (κ − 1/2)Λ ≤ z ≤ w + (κ + 1/2)Λ |w)

= Fz(w + (κ + 1/2)Λ) − Fz(w + (κ − 1/2)Λ)

(5)

I(y; i) = H(i) − H(i|y) =

1X
i=0

Z ∞

−∞
P (y, i) log P (i|y)dy −

1X
i=0

P (i) log P (i)

=
1X

i=0

»Z ∞

−∞
py(y|i)P (i) log

py(y|i)P (i)

py(y)
dy − P (i) log P (i)

–

=
1X

i=0

P (i)

Z ∞

−∞
py(y|i) log

py(y|i)P1
j=0 py(y|j)P (j)

dy

(7)

a0 = a, a1 = −b, a2 = −a, a3 = b

a0 = a, a1 = b, a2 = −a, a3 = −b

a0 = a, a1 = b, a2 = −b, a3 = −a

a0 = b, a1 = −a, a2 = a, a3 = −b

a0 = b, a1 = −b, a2 = a, a3 = −a

a0 = −b, a1 = b, a2 = a, a3 = −a

a0 = −a, a1 = b, a2 = a, a3 = −b

(Possibly this set can be reduced further.)
By symmetry, x ∈ {−a,−b, b, a} are equally likely so the

power constraint translates into E[x2] = (a2 +b2)/2 ≤ P . We then
search over a grid which contains all a, b that satisfy this constraint,
and for each combination of a, b we examine the 12 combinations in
(10). The optimization is computationally rather burdensome. How-
ever, it can be accomplished within a few hours on a standard desk-
top PC. Note that the optimization of THP (with respect to α, Λ) can
be accomplished via the same procedure by restricting the search to
those a0, ..., a3 which satisfy x = ((2i−1)α−z) mod Λ for some
α, Λ.

The optimal receiver has a simple form, simpler than the optimal
receiver for THP indeed. To find its explicit form, note from (8) that

îMAP = argmax
i

“
e−(y+β−x(i,−β))2/(2σ2) + e−(y−β−x(i,β))2/(2σ2)

”

5. NUMERICAL RESULTS

Mutual information between the received signal y and the informa-
tion bit i was used as performance measure. The input constellation
is binary, so assuming an outer code with rate r the interesting region
would be I(y; i) > r. Monte-Carlo simulation was used to obtain
the results.

Figures 2–3 show I(y; i) for the five different transmitter struc-
tures/scenarios (i) no interference, (ii) interference but no cancella-
tion, (iii) THP with the heuristic parameter choice Λ = 3α, used in
most papers we found, (iv) THP with optimized parameters α, Λ,
and (v) our proposed optimal modulator. Results are displayed
as a function of the maximum allowed transmit power (P ), keep-
ing the noise power and the interference power (β2) fixed. Fig-
ure 2 shows performance with β2 = 4, σ2 = 4. In this case, the
interference-to-noise ratio, INR, is equal to 0 dB. The signal-to-
noise ratio (SNR) equals the signal-to-interference (SIR).4 Figure 3

4Strictly speaking, for a given ratio P/σ2 , the actual SNR may be less
than P/σ2, because the optimal modulator does not necessarily use all avail-
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Fig. 2. Mutual information for β2 = 4, σ2 = 4, INR = 0 dB,
SNR = SIR.

shows the performance at β2 = 10, σ2 = 5 (here INR = 3 dB and
SNR = SIR + 3 dB).

Our optimal modulator is always the best performing one (this
is no surprise since all variants of THP are a special case of the map-
ping that we optimize). Interestingly, there are values of P for which
one generally does better without THP than with it.

In Figure 4, we fix β2 = 4 and vary P, σ2. We show perfor-
mance at an SNR of 1, 3 and 6 dB, as a function of the SIR. We also
show the result for SIR= ∞ (dotted, horizontal lines), for some
different SNR values to get a sense for how much performance loss
(in terms of equivalent SNR loss) the binary interference gives rise
to. The conclusion from this plot is that the equivalent SNR loss in-
duced by the binary interference is at most 1.5 dB, irrespectively of
the SIR (at least for the SNR values considered in the plot). The loss
without interference precoding, however, is much larger. (The THP
curves are omitted to keep the plot readable.)

able power. Yet we refer to P/σ2 as SNR because this facilitates a well-
defined comparison with the no-interference case.
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Fig. 3. Mutual information for β2 = 10, σ2 = 5, INR = 3 dB,
SNR = SIR + 3 dB.

6. CONCLUSIONS

The goal of this paper was to study in some depth the simplest pos-
sible instance of the dirty-paper problem, namely, in one dimension
and with binary signals and interference. We obtained the optimum
precoder (rather, modulator) for this case and demonstrated that it
typically outperforms Tomlinson-Harashima precoding, even when
the parameters of the latter are optimally chosen. A more specific
conclusion was that provided the optimal modulator is used, binary
interference—of arbitrary power—can never hurt the performance
more than what a 1.5 dB decrease in SNR would do (at least for the
SNR values considered in Figure 4).

All conclusions we have drawn under the assumption of binary
constellations do not necessarily translate (at least not quantitatively)
to the case of larger constellations. However, our study does in-
dicate that rather impressive interference suppression (rather, avoid-
ance) performance can be achieved in a single dimension. This result
serves as motivation to continue study low-complexity approaches to
the Costa problem.

The work can be extended in several directions. First, the con-
straint of binary signal constellations may be relaxed. In this case, it
is not clear how the resulting optimization problem can be solved: an
exhaustive search over the mapping x(i, z) does not seem feasible.
However, preliminary experiments not showed here have indicated
that optimization of a subclass of the mapping x(i, z) (such as THP)
is possible. Second, one may attempt to extend our strategy to a
higher (but small) dimension; that is, let x, i, z, n, y be vectors and
work with a multivariate mapping x(i, z). An implementation of
Costa precoding in practice will likely rely on operations in a space
of small dimension, so the problems outlined here would be of much
interest.
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