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Abstract— This paper considers the problem of decentralized
data fusion (DDF) for large wireless sensor networks with
stringent bandwidth requirements. To reduce the power and
bandwidth costs of wireless transmissions, each sensor node is
confined to quantize its sensing data and send 1-bit information
only. Under this setting, we derive the maximum likelihood
(ML) data fusion rule for decentralized parameter estimation,
and analyze its Cramer-Rao lower bound (CRLB) of the fusion
performance in the sense of mean square distortion. Depending
on the underlying noise characteristics, our 1-bit DDF scheme
can achieve estimation performance competitive to or even sur-
prisingly better than that of centralized fusion over unquantized
data. There is considerable saving in communication costs, which
in turn reduces network energy consumption. Furthermore, we
investigate network optimization, for which a worst-case robust
design methodology is adopted to formulate a well-behaved
min/max optimization problem. From the information processing
viewpoint, the resulting optimized network offers robust fusion
performance at minimal costs of communication resources.

Keywords: decentralized data fusion, distributed signal
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I. INTRODUCTION

One fundamental problem in a wireless sensor network
(WSN) is data fusion, where observed data from sensors
need to be aggregated to collectively reach an estimate of the
underlying physical process of interest, subject to certain time
delay constraints [1]. In order to improve the network lifetime
and survivability, it is essential to conserve power during both
data processing and communications. Recent studies show that
communication tasks consume a large portion of the total
energy needed for the overall network operation [2]. To strike
the desired tradeoff in performance and power consumption,
a key problem is to develop effective data fusion techniques
under constraints imposed by limited communications.

To save power and bandwidth during data transmissions,
sensed observations are often compressed and/or quantized
locally at sensor nodes, and sent through lossy wireless
channels to a fusion center/node for information aggregation
[1]. Inevitably, distortions due to quantization, compression
and transmission will affect data fusion. From information
theoretic perspectives, [3], [4], [5] link the data fusion problem
to Wyner-Ziv theory of source coding with decoder side
information. Rate-distortion theory is then applied to derive the
admissible distortion regions. These results provide important
insights on where the distortion could be, but implementation
of the coding strategy might not be practical under the storage
and delay constraints. Centralized data fusion is addressed

in [6], [7] by optimally designing local quantizers based
on known joint distribution of sensor data. When the joint
distribution is unavailable, it can be estimated via training [8].

Alternative to the unconstrained fusion approach where
centralized fusion of unquantized data is performed, decen-
tralized data fusion (DDF) schemes using 1-bit per sensor
node have been proposed recently, which result in only linear
performance penalty to optimal unconstrained fusion [9], [10],
[11]. Sensors are organized into multiple groups, and each
sensor only sends 1-bit local decision to the fusion center.
Sensors within a group use the same local decision rule to
process their observations, but the decision rules differ among
groups. When the noise probability density function (pdf) is
unknown but bounded, a universal (pdf-unware) but biased
scheme entails performance penalty four times that of the
optimal unconstrained one [9]. When the noise pdf is known
and Gaussian, an optimal 1-bit fusion scheme can reduce the
penalty to as small as π/2-fold [10]. The unknown noise pdf
case is treated by a practical yet biased fusion scheme [11].

Focusing on DDF with 1-bit decision and transmission per
sensor node, we consider in this paper the general case of
optimal ML data fusion when the noise pdf is arbitrary (as
oppose to Gaussian only). A new distributed multi-decision
fusion scheme is developed, where multiple local decision
rules are employed in the network. The fusion performance
of the proposed ML scheme is analyzed by quantifying the
Cramer-Rao lower bound (CRLB) of the mean square dis-
tortion in the fused data. Our 1-bit DDF scheme has fusion
performance competitive to or even surprisingly better than
the unconstrained fusion scheme, depending on the underly-
ing noise characteristics. Meanwhile, 1-bit DDF considerably
reduces the required bandwidth, which in turn saves energy.

Having obtained the optimal distributed data fusion scheme,
we then turn to the problem of network optimization, where
the goal is to optimize the grouping of sensor nodes and
optimally design the local decision rules. We adopt a worst-
case design methodology to formulate the network resource
allocation problem as a min/max optimization problem that
is readily solvable by software package [12]. The resulting
optimized network satisfies robust performance requirements
at minimal resource consumption.

This paper is organized as follows. Problem statement and
formulation are introduced in Section II. Section III derives
the optimal DDF data fusion rule and its analytic performance.
Network optimization is covered in Section IV, followed by
design examples in Section V and summary in Section VI.
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II. SIGNAL MODEL & PROBLEM FORMULATION

Consider a WSN depicted in Fig. 1. A set of N sensors have
been deployed to make observations of an unknown physical
phenomenon, denoted by a scalar θ. These observations are:

xk = θ + nk, k = 1, 2, . . . , N (1)

where nk denotes i.i.d. zero-mean random noise with pdf
pk(u). In a homogeneous sensing environment, one has
p(u) := pk(u), ∀k, where p(u) is the common noise pdf.

Under bandwidth constraints, sensors perform local quan-
tization or compression on {xk} before sending them to the
fusion center. Suppose that I local quantization or compression
functions are available at sensor nodes, denoted by the function
set {fi(x), 1 ≤ i ≤ I}. Each function maps a continuous
observation xk to a certain value selected in a discrete set,
each represented by a finite number of bits Nb. In the case
of minimal bandwidth requirement (Nb = 1), fi(x) becomes
a binary decision function on sensor observations. These
decision functions {fi(x)} are assumed to take the form:

fi(x) =
{

1, x ≤ τi

0, x > τi
1 ≤ i ≤ I (2)

where τi is a scalar constant acting as a threshold in the
corresponding decision function f i(x).

Each of the N sensors selects one of the I decision functions
to implement locally, and is accordingly organized into one of
the I sensor groups. Suppose that the i-th group uses f i(x)
as its decision function, and the corresponding thresholds are
arranged in an increasing order without loss of generality, i.e.,
τ1 < τ2 < · · · < τI . Representing the number of sensors in
the i-th group by Ni, we define an I-element grouping vector
p = (p1, . . . , pI) where pi := Ni/N . The local decisions
{bk} of all N sensors are organized into a decision vector
b := (b1, . . . , bN). The following equalities arise:

N =
∑I

i=1 Ni; (3)

1 =
∑I

i=1 pi, pi ≥ 0, 1 ≤ i ≤ I; (4)

bk ∈ {0, 1}, 1 ≤ k ≤ N. (5)

Physical Source ( θ ) 

Fusion  Center 

•••

Group 1: 
f1(⋅)

Group I: 
fI(⋅)

q1 qI

Fig. 1. Structure of a sensor network configured for data fusion.

Let G(·) be the global fusion function and θ̂ be the aggregate
estimate of θ at the output of the fusion processor, via θ̂ =
G(b). The fusion performance is measured by the mean square
distortion ε(θ) := E{(θ̂ − θ)2}. Our data fusion problem can
be formulated as finding the fusion function G(·), the decision
set {fi(x)} and the grouping vector p in order to minimize
ε(θ). Mathematically, this problem can be expressed as:

min
G,{fi},p

ε(θ). (6)

III. DDF: OPTIMIZING GLOBAL FUSION FUNCTION

We first consider the 1-bit decentralized data fusion (DDF)
problem with known noise pdf p(u). The unknown pdf case
involves pdf estimation, which is not discussed for space limit.

A. Unconstrained Data Fusion (UDF)

In the absence of bandwidth constraints, sensor observations
could be transmitted to the fusion center lossless. In this case,
the global fusion function G∗(·) with respect to the sensor
observation vector x := (x1, . . . , xN ) can use the best linear
unbiased estimator (BLUE) for UDF as follows [13]:

θ̂ = G∗(x) = N−1 ∑N
k=1 xk = θ + N−1

∑N
k=1 nk. (7)

The BLUE G∗ is independent of the underlying noise charac-
teristics, and becomes optimal in the ML sense for Gaussian
noise. Its associated mean square distortion (MSD) ε∗(θ) is:

ε∗(θ) = σ2/N (8)

where σ2 =
∫

u2p(u)du is the noise variance. The MSD of
UDF serves as the performance reference to our 1-bit DDF.

B. DDF: Optimizing Global Fusion

Under bandwidth constraints, the fusion center only receives
a discretized version of the sensor observation vector x that
is used for data fusion. In the extreme case (1-bit per sensor),
only the decision vector b is available to the fusion center.
For the time being, we suppose that that N sensors have
been classified into I groups based on known local decision
functions {fi} and the grouping vector p. We thus focus on
the problem of designing the global fusion G(b) with the goal
of minimizing ε(θ). The problem of designing I , {f i} and p
will be investigated for network optimization in Section IV.

Consider the k-th group comprised of Nk sensor nodes. Let
us focus on one of these Nk sensor nodes, say Nk,j , 1 ≤ j ≤
Nk, and define bk,j as its decision. From the decision rule in
(2), the probability of bk,j taking 1 or 0 is given by

P (bk,j = 1) =
∫ τk−θ

−∞ p(u)du := F (τk − θ)
P (bk,j = 0) = 1 − F (τk − θ) (9)

where F (x) =
∫ x

∞ p(u)du is the corresponding cumulative
distribution function (CDF) of the noise pdf p(u). Clearly,
bk,j is a binary variable with its mean and variance given by
E{bk,j} = F (τk−θ) and var{bk,j} = F (τk−θ)−F (τk−θ)2.

By averaging decisions from these Nk sensor nodes, the
aggregate observation q̂k of k-th group can be written as:

q̂k = N−1
k

∑Nk

j=1 bk,j . (10)

When Nk is sufficiently large to invoke the central limit
theorem (CLT), q̂k can be modeled as a Gaussian random
variable with mean qk and variance σ2

k . For simplicity, σ2
k is

approximated as constant and measured from the environment.
The mean value qk is given by

qk = N−1
k

∑Nk

j=1 E{bk,j} = F (τk − θ). (11)

Here q̂k can be viewed as a noisy observation of F (x−θ) at the
sample point τk that belongs to the vector τ := (τ1, . . . , τI).
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The conditional probability of observing q̂ given τ and θ is

J(θ) = p(q̂|θ, τ ) =
I∏

k=1

p(q̂k|θ, τk) =
I∏

k=1

N (q̂k; qk, σ2
k).

(12)
The optimal global fusion function G(·) should find the θ̂ that
maximizes this conditional probability, expressed as follows:

θ̂ = G(b) = G(q̂) = argmax
θ

log J(θ)

= arg min
θ

∑I
k=1(q̂k − qk(θ))2/σ2

k. (13)

The optimal θ̂ can be derived from (13) by forcing the first-
order derivative of log J(θ̂) to be zero, which leads to

∑I
k=1(q̂k − F (τk − x))F

′
(τk − x)/σ2

k

∣∣∣
x=θ̂

= 0. (14)

There is no closed-form solution to (14); nevertheless, θ̂ can be
solved by efficient numerical methods, either using a Newton
descent-search algorithm on (13) or applying a bi-sectional
search on (14). These search algorithms have well-behaved
convergence, because we can prove the formulation in (13)
asymptotically (in N ) reaches a unique global optimum point.

Without delving into the detailed derivations, we can prove
that the CRLB of θ̂ for the unbiased ML estimator G(·) is:

ε(θ) = E(θ − θ̂)2 ≥ 1

N
∑I

k=1 pkµθ(τk)
(15)

where µθ(x) = p(x−θ)2

F (x−θ)(1−F (x−θ)) .
To gain more insight on the CRLB, let pU (u) be a noise

pdf with normalized unit-variance, and FU (u) be the corre-
sponding CDF, that is, p(u) = 1

σ pU (u
σ ) and F (u) = FU (u

σ ).
Correspondingly, the CRLB can be rewritten as

ε(θ) ≥ K(θ) · σ2

N
, K(θ) :=

1∑N
k=1 pkµ

(
τk−θ

σ

) (16)

where µ(x) := pU (x)2

FU (x)(1−FU (x)) determines a linear perfor-
mance penalty factor K(θ) with reference to the UDF result
ε∗(θ) in (8). Fig. 2 depicts µ(x) for unit-variance Gaussian
and Laplacian noise pdfs. It can be observed that µ(x) peaks
at the origin, indicating that the MSD is minimized when
τ1 = · · · = τI = θ. As such, the 1-bit DDF suffers a moderate
linear performance penalty of K(θ) = π/2 for the Gaussian
noise, but exhibits better MSD for the Laplacian noise since
µ(0) = 0.5. This is because BLUE is ML optimal only for
Gaussian noise.
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Fig. 2. CRLB-related µ(x) of unit-variance Gaussian and Laplacian noises.

IV. DDF: NETWORK OPTIMIZATION

The CLRB in (15) suggests that thresholds τ in local
decision functions need to be set exactly at θ to minimize
the performance penalty in the 1-bit DDF scheme. Since the
source variable θ may vary over time due to environmental
changes, these thresholds need to be updated to be close to θ
for satisfactory performance. However, updating the thresholds
leads to communication overhead that may offset the low
communication benefits of the 1-bit DDF scheme.

Assuming the dynamic range of the source variable θ is
known a prior, we present a design strategy that provides
robust fusion performance for any θ within the known range,
with no overhead in updating the thresholds. Noting that the
CRLB in (16) only depends on the relative distance between τ
and θ, we assume without loss of generality that the dynamic
range can be expressed as θ ∈ (−Ω, Ω), Ω > 0. Our robust
design boils down to optimization of the network so that the
least number N of sensor nodes is needed to provide fusion
performance no worse than a desired level ε0, i.e.,

min
{fi},p

N s.t. ε(θ) ≤ ε0, ∀ θ ∈ (−Ω, Ω). (17)

This formulation provide guaranteed performance with ro-
bustness to any change of θ within a range. Minimizing N
is also useful in reducing the load at the medium access
control (MAC) layer to avoid packet collision when scheduling
transmissions from a large number of sensors. It is reasonable
to substitute the unknown ε(θ) in (17) by its CRLB in (16),
since ε(θ) of our optimal 1-bit DDF will approach the CRLB
when N is sufficiently large, which is typically the case for
a large-size dense WSN. With this approximation ε(θ) =
K(θ) · σ2/N , it can be deduced from (17) that

N ≥ C · K(θ), where C = σ2/ε0 > 0. (18)

Clearly, the design objective in (17) can be transformed to

min
{fi},p

max
θ

K(θ). (19)

Design A [Uniform Network Distribution] : Suppose the N
sensors are uniformly organized into I groups and the thresh-
olds in local decision functions are evenly distributed within
the dynamic range of the source variable θ, i.e., p i = 1/I, ∀i,
and τk = −Ω+2Ω∗ k

I+1 , 1 ≤ k ≤ I . For every θ ∈ (−Ω, Ω),
there is at least one τk, k ∈ {1, . . . , I} that satisfies |τk −θ| ≤
2Ω

k+1 . It can be deduced that

K(θ) ≤ I/µ

(
1

I + 1
· 2Ω

σ

)
. (20)

From (20), a numerical bi-sectional search on I yields the
optimal group number Iopt, which depends on the desired ε0.

Design B [Optimized Network Distribution] : The network
design can be improved by adopting a non-uniform strategy.
Since K(θ) ≥ 0, we reformulate our optimization problem as:

min
{fi},p

max
θ

K(θ) s.t.
∑I

k=1 pi = 1, τ1 < · · · < τI .

(21)
This is a standard min/max optimization problem that can be
solved efficiently using off-the-shelf software, e.g., [12].
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V. DESIGN EXAMPLES & SIMULATION RESULTS

Simulations are conducted to evaluate the performance of
the proposed 1-bit DDF scheme and compare it with the UDF
scheme. In the first design example, all sensor nodes use a
common local decision function. The threshold associated with
this local decision function is periodically updated to be close
to the underlying physical phenomenon θ. Fig. 3 depicts the
MSD performance of the proposed fusion rule in (13), along
with the CRLB and the performance of the UDF. Both unit-
variance Gaussian and Laplacian noise pdfs are considered.

It shows that when N is sufficient large, the MSD ε(θ) of
1-bit DDF matches the CRLB very well, which confirms the
ML optimality of our design and justifies the use of the CRLB
value for network optimization in (17). Furthermore, Fig. 3
confirms that the 1-bit DDF has estimation performance linear
to that of the UDF. Depending on the underlying noise charac-
teristics, the linear performance penalty factor is K(θ) = π/2
for Gaussian noise and K(θ) < 1 for Laplacian noise, the
latter of which corresponds to better fusion performance than
BLUE-based UDF.

The second simulation example examines network opti-
mization under both uniform and non-uniform deployment
strategies. In Fig. 4, the dynamic range of θ is (−2, 2), the
group number is I = 2, and both Gaussian and Laplacian
noise pdfs of unit variance are evaluated. The non-uniform
deployment strategy demonstrates better performance than the
uniform one, at the expense of higher complexity needed in
determining the optimal thresholds. The robust deployment for
the 1-bit DDF avoids the overhead of updating thresholds by
settling for (non-optimal) guaranteed performance at a pre-
scribed level ε0. In contrast, the UDF scheme is independent
of the dynamic range of the underlying θ.

VI. CONCLUSIONS

For decentralized data fusion using 1-bit per sensor node, we
derived in this paper the optimal ML data fusion rule and its
CRLB performance under known noise pdf. Both theoretical
and simulation results show that the proposed scheme can
achieve fusion performance comparable to or better than
unconstrained data fusion, at minimal bandwidth consumption.
Network optimization is also considered, which is transformed
as a robust optimization problem through min/max formu-
lation. Both uniform and non-uniform deployment strategies
are considered and optimized to minimize network resource
consumption. The network optimization solutions minimize
the number of sensor nodes needed, which is also useful in
reducing the load at the MAC layer to avoid packet collision
during sensor scheduling. These results are discussed for the
known noise pdf case, and will be instrumental to solving the
more challenging case of unknown noise characteristic.
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Fig. 3. Fusion performance for various optimal global fusion functions.
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