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ABSTRACT

We present a simple but general model for feature-based in-

formation processing with selective attention. We model fea-

ture extraction as projections onto frames of subspaces, which

accounts for redundancies in the representations of individual

features as well as between features. To manage limited re-

sources, we use feedback attentional signals to dynamically

allocate system resources according to the observed events.

In our model, attention maximizes the average information

retained about all events weighted by their relative priorities.

We illustrate the model with a simple system under a total

bit constraint and discuss how the organization of the feature

extraction affects the optimal bit allocation.

1. INTRODUCTION

Many of today’s important information processing applica-

tions (sensor networks, for example) require intensive dis-

tributed processing of sensor data, but are highly constrained

by the available resources such as energy and bandwidth. An

analogous problem is faced by biological sensorineural sys-

tems, which use limited resources to process extremely com-

plicated sensory information. Yet despite the constraints, sen-

sorineural systems perform amazinglywell even on very com-

plicated tasks. Understanding the benefits of neural organiza-

tional principles will enable us to build more efficient dis-

tributed information processing systems.

Sensory systems have the common characteristic of first

“ripping apart” a complex received signal into very basic

component features, each representing specific information
about the signal. These features are selectively combined to

form more specific complex features in successive stages. In

contrast to matched filters, which narrowly characterize the

signal according to a single template, feature-based process-

ing is flexible enough to describe new events as they arise. To

accomplish this complicated signal decomposition and fea-

ture combining with limited resources, neural systems focus

their processing on “important” events occurring in the sen-

sory scene [1]. Through the process of selective attention,
higher-level systems use feedback to control lower-level sys-

tems according to what seems most relevant and consistent

with a priori models of perceptual features.

Email: {crozell,igoodman,dhj}@rice.edu

In order to assess the advantages of feature-based pro-

cessing and selective attention, we must have a mathemati-

cal description of this information processing strategy. While

much analysis remains to be done, we present here an ini-

tial description of a simple but very general model for fea-

ture extraction in a sensory system based on frame theory.

In our model, attention is used to maximize the information

preserved about important events dynamically as new events
arise and old ones disappear. To demonstrate the usefulness

of this model, we analyze a simple bit-allocation scheme in

which features are encoded at different rates according to their

relative importance.

2. FEATURE-BASED PROCESSING

Sensory processing in biological systems occurs in stages;

front-ends form complete representations of signals in their

operating range, and many parallel secondary areas each re-

spond to a more stimulus-specific feature, such as color or

motion. In every area, information is represented redundantly.

Feature extraction systems must therefore resolve two distinct

types of redundancy: (1) the redundancy within the represen-
tation of an individual feature, and (2) the redundancy be-
tween different features. We model this processing architec-
ture with the mathematical tools of frame theory.

The sensing process is simply modeled as a collection of

spatial and/or temporal filters corresponding to each sensor,

which is equivalent to projecting a stimulus signal s onto a
set of vectors in a high-dimensional space. Expanding a sig-

nal s ∈ H in a set of orthogonal basis vectors for H is a
common operation in signal processing, s =

∑
j kjφj , with

the coefficients kj = 〈s, φj〉 constituting the projections of
the signal onto the associated basis vectors. However, most

biological and man-made sensing systems use a collection of

sensors that are not orthogonal. Therefore, the sensing oper-

ation is better described as a projection of signals onto a re-

dundant collection of vectors (an overcomplete basis) known

as a frame [2]. A collection of vectors {φj} is a frame for a
Hilbert space H if there exist constants 0 < A ≤ B < ∞,
known as frame bounds, so that for any function s ∈ H the
Parseval relation is bounded,

A ‖s‖2 ≤
∑

j
|〈s, φj〉|

2 ≤ B ‖s‖2 . (1)

When the frame vectors are normalized, A measures the
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frame’s minimum redundancy in covering the spaceH.

In contrast to the sensing process, feature extraction oc-
curs when some information is eliminated from the stimulus

signal to isolate a more specific aspect of the signal. Specifi-

cally, feature extraction amounts to the projection of the sig-

nal onto a subspace of the signal space. Because different

features represent some of the same aspects of the signal,

feature subspaces may overlap in the signal space. Feature

extraction stages are progressively more complex and more

specific, meaning that higher-level features represent only a

low-dimensional subspace of the original high-dimensional

signal space. Mathematically, a feature is encoded by projec-

tions onto a (possibly redundant) set of vectors that span only

a subspace of the input spaceH.

The possibility of overlap between feature subspaces

means that the total collection of features considered together

may form a redundant representation for the whole signal

space. The new theory “frames of subspaces” can be used to

characterize these redundant feature subspaces [3, 4]. Here, a

single feature space is represented by a collection of vectors

contained in the rows of the matrix Fl. These vectors form a

local frame for a feature subspaceWl ⊆ H, with local frame
bounds (Al, Bl). The feature extraction operation is the pro-
jection onto Wl, given by fl = Pls. The frame coefficients
representing a feature are corrupted by noise cl = Flfl + nl,

which will model the limited fidelity imposed by resource

constraints. The collection of (possibly overlapping) sub-

spaces {Wl} is called a frame of subspaces for H if there
exist constants 0 < C ≤ D < ∞ such that for any s ∈ H

C ‖s‖2 ≤
∑

l
‖Pls‖

2 ≤ D ‖s‖2. (2)

This Parseval’s relation formalizes feature space overlap.

3. SELECTIVE ATTENTION

As the number of feature spaces in a system becomes larger,

computing and transmitting all of the necessary coefficients

overwhelms system resources. Sensorineural systems cope

with this through the process of selective attention, wherein
network resources are dynamically allocated to feature spaces

according to what events are present in the scene. This alloca-

tion is mediated by top-down attention signals; feedback sig-

nals pass from high-level processes to the systems providing

their inputs. In this way, attention focuses limited resources

on what is important.

“Importance” in this setting has two components: the pri-

ority of an event relative to other events in the scene, and the

relevance of each feature space to that event. Event priori-

ties characterize how important each event is to the system’s

goals; for example, an event corresponding to the presence

of an intruder would receive a high priority, whereas events

corresponding to slowly changing ambient conditions would

receive very low priority. The relevance of a feature space to

an event corresponds to how much information that subspace
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Fig. 1. Low level processing structures extract features from the
signal by projecting onto overlapping subspaces with projection op-

erator Pl. The outputs are represented by a redundant frame expan-

sion for that subspace contained in the matrix Fl and the coefficients
are represented with limited fidelity (represented by additive noise).

Higher-level systems determine the events present and their relative

priorities, and this feedback allows the feature extractors to adjust

their fidelity to maximize the information about the important events.

preserves about the event, which depends on both the coher-

ence of the event with the feature space and the redundancy

of the underlying feature representation.

In general, attention signals should allocate resources to

each subspace in order to optimize a performance criterion

related to the system’s task. However, though tasks such as

detection and estimation are likely, we seek to optimally as-

sign resources without explicitly specifying the final goal of

the system. Thus we require a general method to quantify the

amount of information represented in the feature space out-

put. We turn to a theory of information processing [5]. In
this theory, quantifiable changes in a system’s input are com-

pared to the corresponding changes in its output. If the input

signal is changed and there is (statistically) no change in the

output, the system has not preserved any information about

that event. However, if the output also changes to reflect the

presence of the new event, then the output contains some in-

formation about that event. Quantifying this change measures

how much information about that event is preserved by the

system.

This method is best illustrated by an example: For sim-

plicity, consider an input s generated from a Gaussian dis-
tribution centered on an event vector, s ∼ N

(
em, σ2

sI
)
, and

consider what happens when the input event is perturbed:

em → em + ∆. Because the signals are stochastic processes,
we measure change by calculating the distance between the

probability laws that govern the original signal and its per-

turbation. There are several information theoretic distances

that measure changes in probability distributions. We use the

Kullback-Leibler (KL) distance [6] because of its relevance

both to detection error decay rates and mean-squared esti-

mation error [5]. For a Gaussian distribution with mean µ
and covariance Γ, a change in mean ∆ results in a KL dis-
tance of D (µ‖µ + ∆) = ∆tΓ−1∆/2. In the stimulus signal
space, the KL distance under the perturbational mean change
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is thereforeDs (em‖em + ∆) = ‖∆‖2/2σ2

s .

Information can be lost in a feature space representation

in two distinct ways: (1) the signal of interest is often not

completely contained in the feature space, and (2) the redun-

dant representation of each feature is imperfect due to lim-

ited communication resources. We want to determine how

well the system as a whole preserves the information about

an event. Consequently, we need to calculate the KL distance

between em and (em + ∆) for the total collection of feature
space encodings.

As illustrated in Figure 1, the stimulus signal is projected

onto each feature subspace fl = Pls = VlV
t
l s, where Vl is

an orthonormal basis spanning the feature space Wl ⊆ H.
The extracted feature is represented by projecting it onto a

collection of vectors (on the rows of the matrix Fl) that form

a frame forWl and adding noise, cl = Flfl+nl = FlPls+nl,

where nl ∼ N
(
0, σ2

nl
I
)
. The noise term nl here models the

resource constraint, with σ2

nl
inversely related to the amount

of resources allocated to the lth feature. We need to calculate
the joint KL distance under a mean change for the collection

of feature outputs, c = [ct
1
, ct

2
, . . . , ct

L]
t
.

The KL distance across the joint collection of

feature spaces under the mean change is given by

Dc (em‖em + ∆) = 1

2

(
V ∆

)t
K−1

(
V ∆

)
, where

V = [V1, V2, . . . , VLt ]
t
,K = Ks + Kn and

Ks = σ2

s ·

⎡
⎢⎢⎢⎣

I V t
1
V2 . . . V t

1
VL

V t
2
V1 I · · · V t

2
VL

...
. . .

V t
LV1 I

⎤
⎥⎥⎥⎦ ,

Kn = diag

[
I
σ2

n1

A1

, . . . , I
σ2

nL

AL

]
.

In information processing theory, the important quan-

tity is the “information transfer ratio,” which is the ra-

tio of the output to input distances: γs,c (em, em + ∆) =
Dc (em‖em + ∆)

Ds (em‖em + ∆)
. The information transfer ratio measures

what fraction of the input information is preserved in the col-

lection of feature spaces. A fundamental result from infor-

mation theory states that the information transfer ratio will

always be between zero and one. A value of one represents

perfect information transfer of the stimulus change; a value of

zero represents total information loss. The goal of attention

will be to assign system resources to feature spaces to maxi-

mize the information transfer about events according to their

priorities. This task is complicated by the fact that events with

different priorities may be represented to different degrees in

the same subspaces.

To illustrate the attentional mechanism in a feature extrac-

tion system, we will consider a simple system in which net-

work bandwidth is the scarce resource. Here, the combined

data rate of all feature subspaces is constrained; each feature

Fig. 2. Information transfer vs. bit allocation to one subspace for
a two-feature system. Shown are the information transfer ratios for

two events e1 (dashed) and e2 (dotted) with priorities α1 = 3/4
and α2 = 1/4. The solid curve is the priority-weighted sum γ.
With increasing overlap between features, allocating more bits to

W1 maximizes γ.

must be represented and communicated with a only a limited

number of bits. The role of attention, then, is to dynamically

allocate the available bits among the different subspaces to

best represent the interesting events. Mathematically, given L
feature subspaces and the system capacity ofBtotal bits, we al-
locateBl bits to each feature subspace so that

∑
l Bl = Btotal.

We assume that there are M possible events, and that each

event’s priority is expressed by αm (
∑

m αm = 1). For our
performance metric we use the weighted sum of information

transfer ratios for all events {em} that are determined to be
present.1 The optimal bit allocation is the one that maximizes
the expression γ =

∑
m αmγs,c (em, em + ∆) subject to the

constraint
∑

l Bl = Btotal. We assume the resulting noise
variance in each feature space is given by σ2

nl
= 2−2Bl , mod-

eling the effect of uniform scalar quantization. This allocation

reflects the relative priorities of the events, the coherence of

each feature space with each event, and the robustness pro-

vided by the frame for each feature space.

To see how this bit allocation changes as a function of

overlap between feature spaces, consider the following sim-

ple example. Assume the input space is H = R
10 and

we have two subspaces W1 and W2 of equal dimension that

form a frame of subspaces for the input space. For simplic-

ity, each subspace is represented with an orthonormal basis

(A1 = A2 = 1). There are two events, {e1, e2}, each having
unit norm, with priorities α1 = 3/4 and α2 = 1/4. Initially,
we consider non-overlapping subspaces that each span 5 di-

mensions of the input space, such that e1 ∈ W1 and e2 ∈ W2.

1The presence of each event is determined in this example by an omni-
scient higher-level processor providing the attentional signals, but in a work-

ing system the salient events would be determined by a detection algorithm

that would occasionally make mistakes.
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Figure 2 shows the total information transfer ratio for each

event, γs,c (em, em + ∆), as well as the weighted sum γ as a
function of the bit allocation for this system. The horizontal

axis is B1, the number of bits allocated to the space W1 out

of the total pool of Btotal = 10 (meaning that B2 = 10−B1).

The bit allocation for the non-overlapping subspaces is plot-

ted in the top left panel. Even though the information trans-

fers for the two events are symmetric, e1 has higher priority

and the maximum γ is achieved by allocating more bits toW1

thanW2.

In the remaining plots, the feature subspaces are enlarged

by successively sharing basis vectors between the subspaces.

For example, in the bottom left plot, each subspace cov-

ers eight dimensions of the input space, and they share six

common dimensions. In this case, the optimal allocation

assigns even more bits to W1, since it now contains both

the high-priority event e1 as well as a significant part of e2.

In the extreme case when the subspaces overlap completely

(W1 = W2), the optimal bit allocation assigns all the bits to
one or the other subspace, since no new information is gained

by including both. In fact, it is perhaps startling to note that

dividing the bits equally between both subspaces results in

the worst performance for this system. Qualitatively similar
results were also seen with three feature subspaces.

In a real system, resource allocation must be dynamic;

attentional signals need to adapt as new events arise and old

ones disappear. Figure 3 illustrates this for the two-feature ex-

ample discussed earlier. Here, there are four possible events

in the space, indexed in order of increasing priority. The bot-

tom plot indicates the presence or absence of each event at

a given time. At each time step, the priority weights are ad-

justed to reflect only those events that are present. When the

feature spaces have only two dimensions in common, the op-

timal bit allocation changes at almost every time step, reflect-

ing the new priorities as the scene changes. As the features

become more redundant, however, the bit allocation becomes

more static; now, both subspaces convey significant informa-

tion about all events, and the optimal solution tends to assign

all the bits to a single feature subspace.

4. CONCLUSIONS

Using frame theory and frames of subspaces we have pre-

sented a very simple but general model of feature extraction.

By drawing on the theory of information processing, we cal-

culated in a general way the information present about an

event in a collection of feature outputs. By maximizing the

information transfer of the feature extractors weighted by the

priorities of the events in the scene, we determined optimal

allocation of resources to the individual feature spaces. Even

the simple examples explored here show that blind allocation

of resources can result in inferior performance. Attentional

feedback allows the system to redistribute its resources adap-

tively to maintain optimal information transfer.

This paper describes an initial foray into a general theo-

Fig. 3. Dynamic bit allocation in a two-subspace system. The top
two plots depict B1, the bit allocation to W1 resulting from maxi-

mizing γ. At any time each of four events may be present. For the
top plot, the two feature subspaces share two common dimensions,

whereas for the middle plot they share eight dimensions. In the high-
overlap case, bits are more often allocated to a single subspace. The

bottom plot indicates the events present at each time step.

retical framework for attentional processing in feature-based

systems. In the examples we presented, bit allocations were

only made on the basis of events that were known to be

present. In a more advanced simulation a system will need to

enforce lower bounds on the information present about each

event so the appearance of new events isn’t missed. While a

total bit constraint was used here, the adaptation in each sub-

space could reflect other constraints such as communication

power. The total information transfer expression does sim-

plify somewhat and we believe that further analytic work will

provide insight into achieving optimal resource allocation.
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