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ABSTRACT

Sensor scheduling is essential to collaborative target tracking in 

Wireless Sensor Networks (WSNs). In this paper, we present a 

Multi-step Adaptive Sensor Scheduling algorithm (MASS) by 

selecting the next tasking sensor and its associated sampling 

interval based on the prediction of tracking accuracy and energy 

cost over a finite horizon of steps. MASS adopts alternative 

tracking mode for each prediction step, i.e., the fast tracking mode 

(FTM) or the tracking maintenance mode (TMM) dependent on 

whether the estimated or predicted tracking accuracy is 

satisfactory. The Best Sensor Schedule Sequence (BSSS) is found 

by searching and comparing the Candidate Sensor Schedule 

Sequences (CSSSs) at two levels, i.e., the logical tracking mode 

level which is simplely defined on multi-step tracking modes and 

the physical quantity performance level by considering the 

tradeoff between tracking accuracy and energy cost. MASS 

employs the extended Kalman filter (EKF) algorithm to predict 

the tracking accuracy and an energy consumption model to predict 

the energy cost. Simulation results show that, compared with the 

traditional non-adaptive sensor scheduling algorithm and the 

single-step adaptive sensor scheduling algorithm, MASS can 

achieve fast tracking speed and superior energy efficiency without 

degrading the tracking accuracy. 

1. INTRODUCTION

Sensor scheduling is essential to collaborative target tracking in 

Wireless Sensor Networks (WSNs). In most existing work, usually 

the tasking sensors are scheduled based on uniform sampling 

intervals, and the sensor scheduling is degraded to a sensor 

selection problem. For example, in the information-driven sensor 

querying (IDSQ) approach [1], the next tasking sensor is selected 

to maximize the information gain while minimize the resource 

cost. Multi-step lookahead technique is introduced to IDSQ [2] by 

predicting information gain over a finite horizon.

A drawback of a uniform sampling interval and pure objective 

function based sensor scheduling scheme is its difficulty in 

specifying a specific tracking accuracy goal, which is often 

required by a practical tracking system [3]. In addition, they are 

short of strategies to account for the changing of the environment 

and the dynamics of the target. Recently we have proposed an 

adaptive sensor scheduling algorithm [4][5] by jointly determining  
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the next tasking sensor and the corresponding sampling interval 

according to the predicted tracking accuracy and the energy cost. 

However the adaptive sensor scheduling algorithm in [4][5] is 

greedy single step based, and suffers from trapping at local 

minima. In this paper we present a Multi-step Adaptive Sensor 

Scheduling algorithm (MASS) to incorporate more global 

knowledge to improve tracking accuracy and energy efficiency. 

2.     SYSTEM MODELS AND THE EKF ALGORITHM 

In this paper, we will consider the single target tracking problem 

under the distributed architecture. We assume at each time step, 

only one sensor can be used as the tasking sensor that is 

responsible for sensing and estimation update, sensor scheduling, 

and transmitting the sensor scheduling result to the selected 

tasking sensor. We assume a linear target motion model and a 

non-linear measurement model, both with Gaussian noise 

distributions. EKF is used as the estimation algorithm. The target 

motion is modeled as the following state equation 

),()()()1( kk tkwkXtFkX (1)

where )(kX  is the state of the target at the k-th time step which 

happens at kt ,
kkk ttt 1

 is the k-th sampling interval. 

)( ktF  is the transition matrix dependent on 
kt . ),( ktkw  is 

the process noise, which is also dependent on 
kt .

If sensor i is used for the k-th measurement ( )iZ k  of the target 

at kt , the measurement model is given by 

( ) ( ( )) ( )i i iZ k h X k v k                       (2) 

where
ih  is a (generally non-linear) measurement function. ( )iv k

is the measurement noise in sensor i. Both w and
iv are

independent and assumed to be with zero-mean, white, Gaussian 

probability distributions. The covariance matrices of ),( ktkw

and ( )iv k  are )( ktQ  and ( )iR k  respectively.  

EKF operates in the following way: Given the estimate 

)|(ˆ kkX  of )(kX  at kt with covariance )|( kkP  and assuming 

sensor j is used for measurement at
1kt , the predicted state 

ˆ( 1| )x k k  of sensor j at 
1kt  can be calculated as 

)|(ˆ)()|1(ˆ kkXtFkkX k
,                 (3) 

with the predicted state covariance  
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)()()|()()|1( k

T

kk tQtFkkPtFkkP ,  (4)

and the predicted measurement of sensor j is

))|1(ˆ()|1(ˆ kkXhkkZ jj
.                    (5) 

Then the innovation is given by  

)|1(ˆ)1()1( kkZkZk jjj
,              (6)

with the covariance 

( 1) ( 1) ( 1| ) ( 1) ( 1)T

j j j jS k H k P k k H k R k        (7) 

where )1(kH j
 is the Jacobian matrix of the measurement 

function
jh  at 1kt with respect to the predicted state 

ˆ( 1| )x k k . The EKF gain is given by 

1( 1) ( 1| ) ( 1) ( 1)T

j jK k P k k H k S k ,               (8) 

and the state estimation will be updated as 

ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1)jx k k x k k K k k        (9) 

with the covariance matrix 

)1()1()1()|1()1|1( kKkSkKkkPkkP T

j
. (10)

     Particularly, for a 2-dimensional constant velocity model with 

( )X k ( ( ), ( ), ( ), ( ))T

v vx k x k y k y k  where )(kx and )(ky  are the 

x- and y-coordinates of the target at time step k, )(kxv
 and )(kyv

are the velocities of the target along x- and y-directions at 
kt , the 

matrix )( ktF  is given by    
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In this paper, the matrix )( ktQ  is assumed to be  
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where q is a known scalar that determines the intensity of the 

process noise. 

The above EKF operations are used for the estimation update 

when a tasking sensor gets an actual measurement and for 

prediction of the tracking accuracy in sensor scheduling without 

an actual measurement being taken.  

3.   MASS FOR TARGET TRACKING 

3.1. Overview of MASS 

MASS extends the single-step sensor scheduling scheme [4] [5] to 

the multiple-step case, where for each step the tasking sensor and 

its associated sampling interval are determined jointly based on 

the predicted tracking accuracy and the energy cost over the 

prediction horizon. Hereafter we assume the horizon for prediction 

in MASS is n steps. MASS is based on the determination of the 

sampling interval for each step for a given n-step Candidate 

Sensor Schedule Sequence (CSSS), and implemented by searching 

such CSSSs to find the Best Sensor Schedule Sequence (BSSS). 

Only the sensor schedule of the first step of the BSSS will be used 

as the sensor scheduling result. Similarly to [5], for each step, 

MASS schedules sensors in the fast tracking mode (FTM) or the 

Tracking Maintenance Mode (TMM) (Section 3.3). These two 

tracking modes will be incorporated in determination of the 

sampling interval for each step of a given CSSS and in 

comparison of CSSSs. 

3.2.   Tracking Accuracy and Energy Model   

In this paper, the tracking accuracy )(k  at time step k is defined 

as the trace of the covariance matrix ( | )P k k , i.e. 

( ) Trace( ( | ))k P k k .                           (13) 

An accuracy threshold 
0

 is predefined. )(k  is considered to 

be satisfactory if it is not greater than 
0

, otherwise it is 

considered to be unsatisfactory.  

 Energy consumption is used as the tracking cost. If the current 

tasking sensor i considers another sensor j (i j) as the candidate 

tasking sensor for the next step, the energy is mainly consumed by 

data communication (consisting of data transmission from sensor i

to sensor j, and data receiving by sensor j) as well as the 

sensing/processing within sensor j. We adopt the energy models in 

[6]. The energy consumed by sensor i in transmissions is 

breejiE ijdtt )(),(  where te and de are decided by the 

specifications of the transceiver of sensor i, ijr is the distance 

between sensor i and sensor j, b is the number of bits sent, and 

depends on the channel characteristics and is assumed to be 

known. The energy consumed in data receiving by sensor j is 

bejE rr )(  where re is decided by the specification of the 

receiver of sensor j. The energy spent in sensing/processing data 

of b bits by sensor j is bejE ss )( . Thus the total energy 

consumption by selecting sensor j is  

ijsrt reejEjEjiEjiE 10)()(),(),(    (14) 

where  beeee srt )(0
, and 

1 .de e b

  If i=j, i.e., sensor i selects itself as the next tasking sensor, no 

communication is performed, the associated energy consumption 

is used for sensing/processing and is expressed as 

( , ) ( ) .s sE i j E j e b                       (15) 

3.3. Scheduling for a Given CSSS 

Assume current tasking sensor is sensor i and the current time step 

is k, and j0, j1, …, jn is a given CSSS, with j0 being sensor i who 

performs the sensor scheduling and js is the sensor selected for the 

s-th step. For this CSSS and s=1, 2, …, n, we need to know the 

predicted sampling interval 
st  between js-1 and js, the achievable 

tracking accuracy 
sj
 after s prediction steps, and the predicted 

energy cost E(js-1, js) for the s-th prediction step. In order to get 

these parameters, we also need to calculate the state estimation 

ˆ
sj

x  and its covariance matrix 
sj

P  for each prediction step s. For 

the prediction step s, FTM is used when the estimated tracking 

accuracy (
1sj
) is not satisfactory, or after another prediction step 
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the predicted tracking accuracy (
sj

) can not be satisfactory 

using any sampling interval in ],[ maxmin TT  where 
minT  and 

maxT

are the given minimal and maximal sampling intervals 

respectively. Otherwise, TMM is used where 
1sj
 is satisfactory 

and there exists a sampling interval 
st  such that 

sj
 can 

remain to be satisfactory. We also define an unsatisfactory flag 

sj
F lag  to stand for the tracking mode for the s-th prediction step. 

If TMM is used for the s-th prediction step then 
sj

F lag =0

otherwise
sj

F lag =1.

      Scheduling for a given CSSS is used to determine the step-

wise tracking mode, sampling interval, tracking accuracy and 

energy cost, it is implemented sequentially from the first 

prediction step to the n-th prediction step as follows: 

1. For the first prediction step, ˆ( | )x k k , ( | )P k k  can be updated 

using the true measurement of sensor j0 (i.e., sensor i) according 

to (9) and (10), 
k

 can be calculated by (13), and E(j0, j1) can 

be calculated by (14) or (15). 
1t  can be calculated in two 

ways:   

1) If
k

 is unsatisfactory or 
k

 is satisfactory but 
1j

 can 

not be satisfactory even using 
minT  as sampling interval, 

then FTM will be used, 
1j

Flag =1, and the 
1t  is set as 

minT , accordingly 
1

ˆ
jx  and 

1j
P  will be calculated by (3) and 

(10), and 
1j
 can be calculated from 

1j
P  by (13).  

2) Otherwise TMM is adopted, 
1j

F lag =0, and 
1t  is 

searched in ],[ maxmin TT  approximately using the discrete 

search algorithm in [5]. Based on this 
1t ,

1
ˆ

jx ,
1j

P  and 

1j
 can be calculated in the same way as in 1).   

2. For s=2, 3, …, n sequentially, by using the (s-1)-th step 
1

ˆ
sj

x ,

1sj
P  as the initial state estimation, the calculation of 

parameters E(j0, j1),
sj

F lag ,
st , ˆ

sj
x ,

sj
P , and 

1j
 can be 

performed in the same way as in 1.    

For each prediction step, an objective function is defined as  

1

1

( , )
( ) (1 ) , if  Flag 1

( , )
, if Flag 0.

s s

s

s

s s
j j

s

j

s s
j

s

E j j
w k w

t
J

E j j

t

(16)

In (16), 
1( , ) /s s sE j j t  is the normalized energy consumption 

over
st . For FTM, the step-wise objective function is a linear 

combination of the tracking accuracy and the normalized energy 

consumption with a weighting parameter w [0,1] to balance the 

tracking accuracy and the energy consumption. For TMM, only 

the energy consumption is used as the objective criterion.

3.3. Searching BSSS from CSSSs 

The step-aggregated objective function of a given CSSS is 

defined as

1

( )
s

n

j

s

J CSSS J .                    (16) 

In addition, a decision number is defined using the tracking modes 

for a CSSS: 

1

DN(CSSS)= 2 *
s

n
n s

j

s

Flag                    (17) 

which is the binary number concatenated by the unsatisfactory 

flags of the CSSS.   

     The comparison of two different CSSSs is done in 2 different 

levels, i.e., the logical tracking mode level  purely based on the 

decision numbers and physical quantity performance level based 

on the step-aggregated objective function. In the logical tracking 

mode level, a CSSS (denoted as CSSS1) is considered to be better 

than another CSSS (denoted as CSSS2) if DN(CSSS1)< 

DN(CSSS2). If CSSS1 and CSSS2 are with the same decision 

number, the physical quantity performance level is used, and 

CSSS1 is considered to be better than CSSS2 if J(CSSS1)< 

J(CSSS2). For example, in Fig. 1 (a), we can easily to sequence 

the four CSSSs from the best to the worse as CSSS4, CSSS2, 

CSSS3, and CSSS1 because their decision numbers are 00, 01, 10, 

and 11 respectively. However in Fig. 1 (b), CSSS1 and CSSS2 are 

with the same decision number, so they should be compared by 

their physical quantity performance.  

    The BSSS can be found by search CSSSs. Suppose the number 

of sensors that can be selected for each prediction step is 

upbounded by m, then the computation complexity for this search 

procedure is O(mn) and should be affordable because the 

prediction horizon n is usualy a small number such as 2 or 3. 

4. EXPERIMENTAL RESULTS 

We apply MASS to tracking of a moving sound source (the target) 

using a network of acoustic amplitude sensors. The measurement 

model for sensor j is

( ) ( )
|| ( ( ), ( )) ( ( ), ( )) ||

j j

s s

a
z k v k

x k y k x j y j

      (22) 

where a R is the assumed known amplitude of the sound source, 

( ( ), ( ))x k y k  is the location of the sound source at time step k

required to be estimated, ( ( ), ( ))s sx j y j  is the known position of 

sensor j, and ( )jv k is the zero-mean Gaussian measurement noise 

of sensor j with variance 2

j
. We use the constant velocity model 

explained in Section 2 as the target motion model. 

The monitored field is 100m 100m with the coordinate from 

(0, 0) to (100, 100), it is covered by 50 randomly placed sensors. 

The sound source produces sound with a constant amplitude a=40

and travels at a constant speed v=10m/s along the straight diagonal 

line starting from (20, 20) and ending at (80, 80). We assume 
2

j
=0.001 for any sensor j and q=9 in the process noise. For 

initialization, we assume the nearest sensor detects the sound 

source and initiates the tracking procedure. The initial estimation 

of the sound source is random generated with the mean (20, 7.07, 

20, 7.07)T and the covariance matrix 10I where I is the identity 

matrix. The following parameters taken from [6] are used in the 

energy model: =2,
te = 45x10-6,

re = 135x10-6,
se =50 x10-6, all 

in J/bit, and 
de =10x10-9 in mJ/bit-m2. b is assumed to be 1024.  
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                             (a)                                                    (b) 
Fig. 1.  Comparison of CSSSs (a) at the logical tracking mode level, (b) at 

the physical quantity performance level 

   For the sampling interval, we suppose 
minT =0.1,

maxT =0.5, and 

the sampling interval is selected from 0.1, 0.2, …, 0.5. We also 

assume w=0.16 for the objective function (16) and the threshold of 

the tracking accuracy is set as 
0

=10.

We compare the performance of MASS (with n=2), the non-

adaptive sensor scheduling scheme, and the single-step adaptive 

sensor scheduling. Fig. 2 demonstrates the tracking accuracy 

achieved by such 3 sensor scheduling schemes, where the non-

adaptive sensor scheduling scheme shows big fluctuations in 

tracking accuracy due to the lack of accuracy control strategy. 

Both adaptive sensor scheduling schemes can remain to be 

satisfactory once the tracking accuracy becomes satisfactory. 

MASS is the fastest (Fig. 2) to achieve the satisfactory tracking 

accuracy. Fig. 3 demonstrates their accumulated energy 

consumptions. Although initially MASS uses more energy than 

single-step adaptive sensor scheduling algorithm, it consumes less 

total energy. The changes of the sampling intervals of the 2 

adaptive sensor scheduling schemes are shown in Fig. 4. As for 

MASS, to adjust the tracking accuracy, during the initial fast 

tracking mode, MASS adopts the minimal sampling interval 
minT

for 5 time steps, then increase the sampling intervals to 0.2, 0.3 

and 0.5 seconds. During the tracking maintenance mode, the 

sampling intervals switch between 0.2 s and o.5 s. The averaged 

sampling interval for MASS and single-step adaptive sensor 

scheduling algorithm are 0.332 s and 0.311 seconds respectively. 

5. CONCLUSIONS 

In this paper, we present the Multi-step Adaptive Sensor 

Scheduling algorithm (MASS) by introducing the multi-step 

lookahead prediction strategy. Based on the fast tracking mode 

(FTM) and tracking maintenance mode (TMM), the Best Sensor 

Schedule Sequence (BSSS) can be found from the Candidate 

Sensor Schedule Sequences (CSSSs) at the logical tracking mode 

level or the physical quantity performance level. Simulation 

results show that MASS outperforms the traditional non-adaptive 

sensor scheduling algorithm and the single-step adaptive sensor 

scheduling algorithm in terms of tracking speed and energy 

efficiency. As the future work, more advanced techniques (such as 

particle filter) are required for adaptive sensor scheduling with 

more general non-linear non-Gaussian tracking scenarios, adaptive 

motion model based sensor scheduling, and sensor scheduling for 

multi-target tracking are the other challenging problems for 

further investigations. 
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