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1. ABSTRACT

In this paper a coding theorem for multiterminal

estimation is presented. The theorem is a generaliza-

tion of the distributed coding theorem first proved by

Slepian and Wolf [7], where the goal is to estimate

the joint probability distribution of correlated sources,

rather than to reconstruct them at the receiver. For

this, it is shown first that the joint-type of the received

sequences is a sufficient statistic for estimation. Then,

it is proved that for sufficiently large sequences, only

a sum-rate lower bounded by the mutual information

of the correlated sources is ”sufficient” to perfectly

reconstruct the sufficient statistic at the receiver. Sim-

ulation results for the special case of estimation with

side information at the receiver is provided.

2. INTRODUCTION

Suppose two spatially separated “non-cooperative” sen-

sors measure a random phenomenon characterized

by a bivariate binary probability distribution (PD)

p(X, Y ; t) where t ∈ � is scalar parameter by which

the PD is uniquely identified. The sensors transmit the

sequence of measurements via generally limited ca-

pacity communication channels to a common receiver.

Given the set of possibly compressed sequences, it is

desirable for the receiver to estimate the parameter, i.e.

identify the PD. It was Berger [1] that introduced this

interesting problem also referred to as “multiterminal

estimation”. Later through a series of papers by Zhang

and Berger [2], Han and Amari [3] [4] the multiterminal

estimation problem was studied and necessary and

sufficient conditions for designing efficient estimators

under zero-rate as well as positive-rate conditions

were derived. The analytical solutions provided in this

series of papers are mathematically intractable and too

complicated to implement; they can only be applied

to elementary scenarios [3]. The main questions in

this category of solution have been “Given constrained

communication resources, what degree of accuracy is

attainable and, whether estimation is efficient, and to

what extent?”

In contrast we approach the problem by answering

the question “what rate (or sum of rates) is ”sufficient”
to have perfect estimation?” The answer is an effort to

provide a practical solution to the general multiterminal

estimation problem. Our approach is closer to the dis-

tributed source coding theorem first proved by Slepian-

Wolf [7]. In fact, we extend the distributed source

coding theorem to the case in which the accuracy

of parameter estimation is the main concern, rather

than the perfect reconstruction of the sources. For this

purpose, in Section (3) we first show that in order to

have optimal estimation it is sufficient to preserve the

information residing in the joint-type of the correlated

sequences. Then in Section (4) the rate region for

noiseless transmission of such information as well as a

coding scheme for achieving the rates are presented. It

is proved that the necessary sum-rate is I(X, Y ), i.e.

the mutual information between the sources. In Section

(5) simulation results for the special case of estimation

with side information at the receiver are presented.

Concluding remarks close the paper.

3. MULTITERMINAL ESTIMATION

Suppose a phenomenon is characterized by a dis-
crete bivariate joint probability distribution p(X, Y ; t),
where t ∈ � is a scalar parameter by which the PD

is uniquely identified. The phenomenon is measured

by two “non-cooperative” spatially separated sensors

Sx and Sy . The two sensors can be considered as

monitoring two correlated sources generating a pair

of correlated sequences xn = (x1, ..., xn) and yn =
(y1, ..., yn) of n i.i.d. samples respectively drawn from

p(X, Y ; t). It is assumed that the random variables

X and Y choose their values from a discrete set of

alphabets x, y ∈= {0, 1}. The sequences are encoded

into corresponding message sequences separately by

encoder functions f and g, respectively, and transmitted

to a common receiver via communication channels

which are generally limited in capacity. The mes-

sages are chosen from sets Mx = {1, 2, ..., 2nRx}
and My = {1, 2, ..., 2nRy} respectively. Here Rx

and Ry are called the code rates defined as Rx =
limn→∞

log |Mx|
n and Ry = limn→∞

log |My|
n where

|Mx| and |My| are the cardinalities of the sets Mx and

My , respectively. Since the communication resources

are usually limited, the design of the codebooks and

the messages might involve compression. By appropri-

ately incorporating the compression such that the rate

of the codes is “no less” than the available channel

capacity, the decoder receives the noiseless encoded

messages. At the receiver, it is desired to estimate

the parameter of the underlying phenomenon using the

received sequences and a decoder/estimator function h,

i.e. t̂ = h(xn, yn,mxn ,myn).

A. Repeated Observations and Sufficient Statistics

The bivariate binary PD p(X, Y ; t) =[
p00(t) p10(t)
p01(t) p11(t)

]
is assumed to be a member
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of the K-dimensional exponential family defined

generally as [3]:

p(X, Y ; θ) = exp

[
C +

K∑
k=1

θkFk − ψ(θ)

]
, (1)

where θ(t) ∈ Θ is the vector of canonical parameters,

and the functions Fk(X,Y ) are called sufficient statis-
tics, and ψ(θ(t)) is the normalization function. Notice

that the canonical parameters are generally functions

of the scalar parameter t. Therefore throughout the

paper, estimation of the canonical parameters implies

estimation of the parameter t implicitly. (The PD

with scalar parameter t is a member of the curved

exponential family [3], and therefore for estimating t,
it is sufficient to estimate the corresponding canonical

parameters θ(t). To avoid confusion we do not show

this relationship explicitly.) The representation of the

PD is minimal and the θ-parameters are “minimal
canonical” parameters. The Fk functions are minimal

sufficient statistics when the parameters and functions

are linearly independent [8].

For the bivariate binary PD the functions describ-

ing the minimal sufficient statistics are C(X,Y ) =
0, F1(X,Y ) = δ1(X), F2(X, Y ) = δ1(Y ), and

F3(X, Y ) = δ11(X,Y ), where δa(X) = 1 iff X =
a is the Kronecker delta function and δ11(X,Y ) is

defined similarly. Also the canonical parameters known

as θ-coordinates are defined as θ1 � log p10
p00

, θ2 �
log p01

p00
, and θ3 � log p00p11

p01p10
. Also ψ(θ) = − log p00.

Note that the functions F1, F2, and F3 are related to

the probability of occurrences of X = 1, Y = 1 and

X, Y = 1, 1, respectively. The relative frequency of

occurrence of “1” in the sequences xn and yn as well

as the relative frequency of joint occurrences of “(1, 1)”
in (xn, yn) are sufficient statistics for estimation of the

PD parameters.

Definitions-Joint and Marginal Types: [6] Given n
i.i.d. samples (xn, yn) = (x1, y1), ..., (xn, yn) taken

from the binary PD p(X, Y ; θ), the joint-type p̃ab(x, y)
is defined as the relative frequency of the occurrence

of (x, y) = (a, b) in n observations:

p̃ab(x, y) =
1
n

n∑
s=1

δab(xs, ys), (2)

where δab(xs, ys) = 1 iff (xs, ys) = (a, b); ∀ a, b ∈
0, 1 is the Kronecker delta function. The marginal-types
p̃a(x) and p̃b(y) are defined similarly as the relative

occurrence of a and b in the samples, respectively.

The parameter t can be estimated using the ML

estimation equation obtained by the equating the partial

derivatives of the likelihood function defined for the

PS in Eq. (1) to zero. The Cramer-Rao lower-bound

(CRLB) defined by the inverse of the Fisher informa-
tion (FI) matrix (FIM), respectively [8].

Theorem 1: Given n i.i.d. samples (xn, yn) =
(x1, y1), ..., (xn, yn) taken from a binary PD

p(X, Y, θ). (a) The marginal types p̃1(x) and p̃1(y) and

the joint-type p̃11(x, y) are minimal sufficient statistics.

(b) They achieve the variance of error Cramer-Rao

lower bound(CRLB) for maximum likelihood (ML)

estimation of θ.

Proof: The proof is straightforward by forming the

log-likelihood of the available samples using the ex-

ponential representation of the binary PD p(X, Y ; θ),
and the definition of the joint as well as marginal-

types. The functions describing the sufficient statistics

are then solved by maximum likelihood procedures. For

a detailed proof, refer to [8]. �
Therefore in order to have efficient estimation, it

is sufficient to preserve the marginal-types as well

as the joint-type p̃11(x, y). By carefully examining

these types, it becomes clear that any compres-

sion/transmission strategy that preserves the number of
ones in each sequence as well as the relative occurrence
of ones in both sequences will be sufficient for this

purpose.

4. MULTITERMINAL CODING THEOREM

In this section we provide ”sufficient” conditions and a

coding scheme to preserve the marginal types as well as

the joint-type at the receiver in multiterminal estimation

scenarios. Suppose we generate a pair of sequences

(PoS) (xn, yn) and two sequences xn and yn con-

sisting of n i.i.d samples from probability distribution

p(X, Y ) and its marginal distributions p(X) and p(Y ),
respectively. We then pair up the sequences xn and

yn referring to as paired-up pair of sequences (PPofS)

(xn, yn)p. We appreciate the importance of noticing

the different notations used for the PoS ((xn, yn))and

PPoS ((xn, yn)p). Define:

Definition- The Set of Correlation-Typical Se-
quences: The set A of correlation-typical PPoS

(xn, yn)p with respect to the the marginal distribution

p(X) and p(Y ) and the joint PD p(X, Y ) is the set

of PPoS n−sequences with empirical mutual entropy

ε−close to the true mutual entropy, i.e.,

A = {(xn, yn)p ∈ Xn × Yn : (3)∣∣∣∣ 1
n

log
p(xn, yn)

p(xn)p(yn)
− I(X,Y )

∣∣∣∣ < ε}. (4)

Definition- The Set of Correlation-Typical ”Pair of
Sequences”: The set AI of PPoS (xn, yn)p ∈ A which

are also jointly-typical, i.e. (xn, yn)p ∈ AXY with

respect to the joint distribution p(X,Y ). The AXY is

the corresponding joint-typical set that contains all the

joint-typical pairs of sequences (xn, yn) with respect

to PD p(X, Y ) (see [5]).

Lemma: (Correlational Asymptotic Equipartition
Property, CAEP)

For sufficiently large n and for arbitrarily chosen ε > 0:

1) Pr(A) > 1 − ε,

2) Pr((xn, yn)p ∈ A) ≤ 1 − ε,

3) Pr((xn, yn)p) ∈ AI ≤ 2−n(I(X,Y )+ε),

4) |A| ≤ 2n(H(X)+H(Y )+ε),

5) |AI | ≤ 2n(H(X,Y )+ε),

6) |A| ≤ 2n(I(X,Y )+ε)|AI |
7) There are at most 2n(I(X,Y )+ε) sets of |AI |.
Proof: To save the space we explain briefly the

outline of the proofs. For more detail please refer to
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[8]. (1) The proof is immediate from the definition

of AI . (2) The proof is similar to the proof of the

Asymptotic Equipartition Property (AEP, [5], page 52)

and is based on the weak law of large numbers. (3)

The proof is similar to the second part of Lemma by

considering the fact that the the probability of a joint-

typical sequence is close to 2nH(X,Y ) (c.f. [5], page

196). (4) The proof is immediate from the definition

of AI and the fact that typical sets of sequences xn

and yn have close to 2nH(X) and 2nH(Y ) members,

respectively ([5], page 52). (5) The result is immediate

from (4). (6) The result is immediate by combining the

results of previous parts. �
According to this Lemma, the set of PPoS A is

partitioned into 2nI(X,Y ) sets of correlation-typical sets

AI
i i = 1, ..., 2nI(X,Y ). Members of each of these

sets (on average) are paired pair of sequences with

the same amount of correlation information no matter

which sequences xn and yn are paired-up. Therefore,

in order to extract the correlation information of the

source, there needs to be at least one pair of sequences

from each of these sets that when paired-up carries

the correlation information. This observation leads to

the following multiterminal coding theorem. Before

that we introduce the ”distributed version of random-
bin coding scheme” and the corresponding definition

of probability of error in the multiterminal estimation

framework.

A. Distributed Random Bin Scheme, Achievability

Suppose we partition the space of Xn into 2nRx and

the space of Yn into 2nRy bins.

Random code generation: The source Sx represented

by the random variable X assigns every xn ∈ Xn to

one of 2nRx bins according to a uniform distribution

on {1, 2, ..., 2nRx}. Independently, the source Sy rep-

resented by random variable Y randomly assigns the

sequences yn ∈ Yn to the 2nRy bins {1, 2, ..., 2nRy}.

We call the sequences xn and yn as the codewords and

the set of bins for xn and yn as the codebooks Mx and

My , respectively. The assignment functions f and g
are revealed to both the encoder and decoder. Note that

the generation of the sequences are according to their

marginal distributions rather than the joint distribution.

Encoding and Decoding: Sender Sx sends the in-

dex mxn of the bin to which X belongs to the de-

coder. Similarly for Sy . Given the received index pair

(mxn ,myn), declare (x̂n, ŷn) = (xn, yn) if there is

one and only one pair of sequences (xn, yn) such that

f(xn) = mxn , g(yn) = myn and (xn, yn) ∈ A.

Probability of error Pe. In conventional decoding

(e.g. Slepian-Wolf decoding [5]) an error is declared

if (xn, yn) is not in the joint-typical set (AXY ) or if

there is another jointly typical sequence in the same bin.

Instead, since we are interested in just the correlation
information between the of sequences xn and yn we

relax the probability of error and declare an error if

the PPoS (xn, yn)p is not in A or if there is another

PPoS in the same bin. By this we relax the constraint

to receive and decode exactly the same sequences

at the decoder, and keep our interest in constraining

the decoded pair sequences (x̂n, ŷn) to maintain their

correlational information at the receiver.

Definition-Achievability: The rate R is called achiev-
able if there exists at least one pair of encoders (f, g)
and a decoder h with probability converging to 1
by which one can construct sequences of codes that

provide transmission of the correlational-type informa-

tion of the sequences (xn, yn) to the receiver with

probability of error converging to 0 as n becomes

sufficiently large. It is important to notice that in

the multiterminal distribution coding scheme case, the

convergence of Pe to zero has a different meaning than

for the conventional coding schemes- given a PoS at the

transmitters, decoding a PPoS in a different correlation-

typical set converges to zero.

Theorem 2: The following rates are achievable:

Rx ≥ 0, (5)

Ry ≥ 0, (6)

Rx + Ry ≥ I(X, Y ). (7)

The achievability proof: The proof is based on the

random bin argument similar to the proof of Slepian-

Wolf Theorem given in ([5], page 412). The proof is

based on the particular definitions of achievability and

the correlation-typical set. The main idea is to relax

the conditions corresponding to detecting errors in the

random bin argument, to the sole case where more than

a PPoS are detected in one of the bins. See [8] for more

discussion. �

B. Coding Scheme

Transmission of marginal-types The upper bound on

the number of types with denominator n (here the

marginal-type set) is polynomial in n (e.g. (n + 1)2

[5]). Therefore a codebook containing all possible types

with denominator n can be indexed by not more than

log(n + 1)2 bits. This gives a rate R = 2 log(n+1)
n

which for a sufficiently large n vanishes asymptotically.

Note that in this stage the codebooks are not random

anymore and consist of all the possible marginal-types

rather than the sequences themselves. Therefore, after

this stage, and with almost zero rate, the marginal types

are accessible to both transmitters and the receiver

(estimator).

Transmission of correlation information It is as-

sumed that each one of the sources have access to their

corresponding marginal types. Codebook design: Two

random codebooks Mx and My are generated by two

sources Sx and Sy using the marginal distributions p̃x

and p̃y, respectively. The length of the two codebooks

are |Mx| = 2nRx and |My| = 2nRy , respectively,

such that RX + RY ≥ I(X,Y ). Encoding: The

encoding functions f and g assign to each sequence

xn and yn their corresponding messages mxn and

myn , respectively. The messages are selected as the

indices (addresses) of the closest codewords from the

corresponding codebooks Mx and My , respectively.

Decoding: Given the received index pair (mxn ,myn),

IV ­ 699



the decoder retrieves the corresponding codewords

from the codebooks Mx and My at the receiver.

Joint-type Retrieval: The joint-type p̃11(x, y), of

the source can be retrieved by using the correlation

information retrieved. This, in addition to the marginal

types p̃1(x) and p̃1(y), provide the necessary sufficient

statistics for estimation (cf. Theorem (1)). Correlation
computation: Since ”on average” and for sufficiently

large n, the ratio of p11
px1py1

of the correlation-typical

PoS is almost equal to those of the source. Noticing that

the marginal information is assumed to be conveyed

and therefore known at the estimator, the joint-type

p̃11(x, y), of the source can be retrieved by using the

correlation information retrieved.

Estimation: The estimation is performed by available

sufficient statistics at the receiver, i.e., p̃x, p̃y , and

p̃11(x, y).

5. SIMULATION RESULTS: ESTIMATION WITH SIDE

INFORMATION AT THE DECODER

For this purpose the estimation of a bivariate binary

PD with side information at the receiver is considered.

The particular scenario presented here is a corner point

of the rate region; i.e. Ry = I(X, Y ), Rx = 0,

which is when complete knowledge of the correlation

information transmitted by the source Y is available

at the decoder. For this purpose the marginal types

p̃x and p̃y of the measured sequences xn and yn are

computed at the transmitters X and Y , respectively, and

conveyed to the receiver with almost zero rates. Then

the random codebook My of size 2nI(X,Y ) is generated

at the transmitter Sy according to the marginal type p̃y .

This codebook is transmitted to the receiver before the

estimation has begun. The codebook Mx is generated at

the receiver according to the marginal type p̃x. The size

of the Mx is chosen equal to the size of the type class of

the marginal distribution, i.e. 2nH(X). For performing

estimation, the index (address) of the closest random

codeword to the measured sequence yn is chosen

from My and transmitted to the receiver where the

corresponding codeword ŷn is retrieved from the same

codebook. The corresponding sequence x̂n is chosen

from Mx such that it is closest to the reconstructed

correlated sequence ŷn.

The performance; i.e., variance of error (trace of the

error covariance matrix), for 50 Monte Carlo runs of

distributed estimation of the bivariate binary symmetric

source p00 = p11 = 0.4 and p10 = p01 = 0.1 is

compared with the ideal case where the estimation

is performed locally at the transmitters with perfect

knowledge of the pair of measured sequences (xn, yn).
The ideal case provides the Cramer-Rao lower bound

(CRLB) for ML estimation. For this scenario, H(X) =
H(Y ) = 1 and I(X, Y ) = 0.2781.

As can be seen from Figure 1, as the length n of

sequences become larger, the CRLB as well as the

error variance of the proposed distributed estimation

scheme decay exponentially. Additionally, the error

variance for distributed estimation asymptotically de-

cays towards the CRLB. Simulations with larger n were

not feasible, due to the exponentially increasing size

of the codebooks. Obviously, in order to be able to

achieve the rate limits to have efficient estimation (in

the sense of achieving the CRLB), implementation of

more sophisticated coding schemes is necessary. This

is the subject of future investigation.

6. CONCLUSIONS

In this paper, a distributed coding theorem for

parameter estimation in multiterminal estimation is

presented. It is shown that when communication is

performed for the purpose of parameter estimation,

the sum-rate of codes for correlated sources can be

as low as the mutual information of the correlated

sources. It is shown that this amount of information

is sufficient to preserve the information conveyed in

the joint-type, which in turn is a sufficient statistic for

parameter estimation. This result is in contrast with the

limits of conventional communication systems that aim

to reconstruct the sources perfectly, i.e. H(X, Y ) (cf.

[7]). In order to achieve the theoretical rate limits for

obtaining efficient estimators (in the sense of achieving

the CRLB), it is required to design and implement more

sophisticated distributed source coding schemes.

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.1n

M
S

E

CRLB
Minimum Hamming

Fig. 1. Estimation Error Variance for Uncompressed and Com-
pressed Sequences (50 Monte Carlo).

REFERENCES

[1] T. Berger, ”Decentralized estimation and decision theory,” pre-
sented at the IEEE 7th Spring Workshop on Information Theory,
Mt. Kisco, NY, Sept. 1979.

[2] Z. Zhang, and T. Berger, ”Estimation via Compressed Informa-
tion,” IEEE T-IT, Vol. 34, No. 2, pp. 198-211, March 1988.

[3] T. S. Han and S. Amari, Parameter estimation with multiterminal
data compression, IEEE Trans. Inform. Theory, vol. 41, pp.
18021833, Nov. 1995.

[4] T. S. Han and S. Amari, ”Statistical Inference Under Multiter-
minal Data Compression,” IEEE T-IT, Vol. 44, No. 6, pp. 2300-
2324, Oct. 1998

[5] T. M.Cover and J.A. Thomas, Elements of Information Theory.
[6] I. Csiszar, ”Method of Types,” IEEE T-IT, Vol. 44, No. 6, Oct

1998, pp. 2505-2523.
[7] D. Slepian and J. Wolf, ”Noiseless coding of correlated infor-

mation sources,” IEEE Transactions on Information Theory, vol.
19, pp. 471-480, July 1973.

[8] A. Zia, Multiterminal estimation, an information theoretic ap-
proach, Technical Report, Department of ECE, McMaster Uni-
versity June 2005.

IV ­ 700


