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ABSTRACT

Cooperative transmission follows the idea to achieve better
reception quality for wireless communication systems by ex-
ploiting spatial diversity. We discuss the case where a group
of sensor nodes transmit cooperatively and simultaneously
identical symbols to a far destination. Doing so, they achieve
a higher total transmit power. This is useful to reach destina-
tions when no intermediate relays are able to act as repeater.
We discuss this situation under the constraints of low power
and low cost hardware and derive an optimal symbol constel-
lation for a M-ary modulation scheme to minimize the symbol
error. For this, we assume neither phase nor carrier synchroni-
zation between cooperatively transmitting nodes or the re-
ceiver yielding an easy to implement system with very low re-
quirements for the participating wireless sensor nodes. Trans-
mitted signals superimpose non-coherently in the receiver which
uses only the amplitude information to decode symbols act-
ing as an energy detector. We therefore name this modulation
Energy Shift Keying (ESK).

1. INTRODUCTION

In wireless sensor networks, the quality of the channels and
links between stations are often poor due to environmental
factors such as occlusion, reflective objects, mobility and low
power transmission. Figure 1 shows the typical application
for cooperative transmission that we want to discuss as our
reference scenario. Multi-hop connected sensor nodes dis-
tributed in the wilderness want to transmit collected data to a
destination like a stationary antenna tower, plane or sattelite.
The distance to the destination is too far, that a single node
cannot communicate its data with sufficient SNR to the base
station and there are no intermediate relays. This scenario
has been previously named as the sensor reach back problem
[1]. There are several arguments (e.g. the problem of a sin-
gle point of failure) why a powerful up-link station among
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Fig. 1. Sensor Reach Back Problem

the sensor nodes is not expedient. We assume that time syn-
chronization and random data exchange is possible between
all pairs of nodes in the sensor network.

In this paper, we want to discuss cooperative transmis-
sion under the constraint of very cheap sensor network nodes
to achieve a multistage (M-ary) modulation. Sensor nodes
transmit data or symbols simultaneously over the radio chan-
nel to increase the total transmit power. Here, we find two
major differences in the literature: Firstly, coherent coopera-
tive transmission where stations superimpose their signals to
achieve coherent phase in the destination receiver ([2], [3])
and secondly, non-coherent cooperative transmission where
the station superimpose their signals without aligning their
phases according to the receiver. The most related work can
be found in [4] and [5]. In those publications, the authors
understand cooperative transmission in the sense that several
sensor nodes transmit symbols simultaneously to achieve a
power gain. The authors propose a system using wide-band
signals and derive an optimal receiver. We instead look at the
transmitter and derive an optimal M-ary signal constellation
for low-cost sensor nodes only using only time- synchroni-
zation, ASK in the sensor nodes and an energy-detector in the
receiver.
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2. NON-COHERENT COOPERATIVE
TRANSMISSION

For the system of cooperative transmission that we discuss in
this paper, we assume that each of the N transmitting nodes
(denoted with index l; 1 < l < N ) all have slightly different
carrier frequencies ωl = ωc +∆ωl with ∆ωl of unknown dis-
tribution due to production variation of the quartz oscillators.
If the l- th sensor node transmits a single complex symbol
Si = a − jb (with j as the imaginary unit, 0 < i < M − 1),
we get as transmitted signal in the time domain for the l- th
node:

tl(t) = �{Si · w(t − τl) · ej(ωlt+ϕl)} (1)

With τl being the time delay or offset in symbol synchroni-
zation, ωl the local carrier frequency, ϕl the phase between
receiver and the l−th transmitter and w(t) the pulse shape
window function. Looking at the single contribution term of
one transmitter; after non-coherent (non-synchronized) down
mix and low passing, the received signal of the l-th transmitter
without noise and channel influence is (in the baseband area
of the receiver):

rl(t) = w(t − τl)
√

a2 + b2 · e−j(∆ωlt+ϕl−� Si) (2)

Equation (2) shows a typical behavior of a non-coherent re-
ceiver. The received signal rl(t) carries an oscillation with
the frequency ∆ωl. In contrast to [5], we do not consider this
oscillation to be negligible. Taking e.g. a transceiver system
on 2.4 GHz with a quartz of 50ppm and symbol rates of some
kbit/s, the ∆ωl is maximum 50kHz which is in the range of
the symbol rate. In the receiver, we get a sum of multiple ro-
tating signal points originated by many transmitters. We as-
sume that a non-coherent reception can only use the received
amplitude u and/or the received differential phase of the re-
ceived signal of which we pick only the amplitude. This has
the interesting side effect that it is especially suitable and easy
to realize in low cost hardware avoiding a complex modula-
tion in the sensor nodes: they transmit using ASK.

3. SYSTEM ASSUMPTIONS AND STATISTICS

We summarize the assumption we will use for the next steps:

1. time delays τl are negligible (τl = 0) as time- syn-
chronization among the nodes is possible

2. phase shifts ϕl are uniformly distributed over [0; 2π[
3. frequency carrier offsets ∆ωl are unknown distributed
4. the channel is flat fading gl = αejθl with 0 ≤ α ≤ 1

and θl being uniformly distributed on [0; 2π[. For sim-
plicity we assume the fading α to be equal for all trans-
mitters as the distances to the receiver are all nearly
equal.

5. the noise is complex circular Gaussian ∼ N (0, σ2
NI2)

6. all M possible complex symbols Si have equal a-priori
probability P (Si) = 1

M

For the derivation of the statistics of a single received sig-
nal/symbol we can apply the central limit theorem: For a high
number of nodes simultaneously transmitting the same sym-
bol received by a non-coherent receiver, we get multiple ro-
tating signal points with nearly equal power (see assumptions
above). The statistics of their sum will converge to a complex
circular Gaussian distribution; the distribution of the ampli-
tude will then be a rayleigh. It can be shown, that this ap-
proximation is already sufficient valid for a small number of
nodes (typically 8). As the single contributions received by
the receiver are i.i.d and the cov(rl, rk) = 0; ∀l, k ∈ [1;N ],
we can simply add the variances and means of the N received
signals components on the I- (�{rl(t)}) or the Q- (�{rl(t)})
axis together. As the phase of the received signal points are
uniformly distributed, the I,Q components of r(t) each carry
half of the received power. Assuming equal receive power
from all nodes (rayleigh approximation) and channel flat fad-
ing with scaling α, the parameters for the received signal r(t)
are: (

µ�{r(t)}
µ�{r(t)}

)
= N · µ

rl(t)
= 0

σ2
�{r(t)} = σ2

�{r(t)} = N · σ2
�{ri(t)} = Nα2σ2

Si
(3)

where we denote with σ2
Si

the transmit power on one compo-
nent:

σ2
Si

:=
1
2
|Si|2 (4)

The the marginal distribution over the amplitude (rayleigh) is:

fSi(|r(t)| = u) =
u

(Nα2σ2
Si

+ σ2
N )

e
− u2

2(Nα2σ2
Si

+σ2
N

)(5)

The transmitted symbols are only simple M-ASK symbols Si

with powers 2σ2
Si

. The receiver is an energy detector and we
therefore call the modulation scheme ESK (energy shift key-
ing). Hence forth, we base our discussion on (5) and summa-
rize the term

Nα2σ2
Si

+ σ2
N =: σ2

i (6)

reflecting the fact that the statistics of the signals and the noise
are both complex circular Gaussian.

4. OPTIMAL SIGNAL CONSTELLATION FOR
M-ARY ENERGY SHIFT KEYING (ESK) TO

ACHIEVE MINIMUM TOTAL ERROR

We are now interested in how the symbols Si (or more pre-
cisely: the power levels σ2

Si
) should be chosen to arrive at an

optimal constellation for the energy-detection. We call Hi the
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decision of the receiver for signal Si. We consider as optimal-
ity criterion that the symbols Si are chosen in a way that the
detection rate for all symbols are maximal:

P =
M−1∑
i=0

P (Si)P (Hi|Si) → max (7)

For the derivation of the optimal symbol constellation under
condition (7), the optimal decision thresholds for an optimal
detector (Maximum Likelihood) lies at the intersection of the
neighbouring rayleigh distributions. Using (6) in (5), this in-
tersection of two distributions with σ2

i and σ2
i+1 is:

u

σ2
i

e
− u2

2σ2
i =

u

σ2
i+1

e
− u2

2σ2
i+1

⇔ u2 = ln
(

σ2
i

σ2
i+1

)
· 2σ2

i σ2
i+1

σ2
i − σ2

i+1

=: γ2
i→i+1 (8)

The detection probability (7) then is:

P =
1
M

M−1∑
i=0

∫ γi→i+1

γi−1→i

fσ2
i
(u)du (9)

with fσ2
i
(u) =

u

σ2
i

e
− u2

2σ2
i

Applying (8) leads to

M · P = Pd = 1 − e

ln(
σ2
1

σ2
0

)·σ2
1

σ2
0−σ2

1 +

+
M−3∑
i=0

⎡
⎢⎢⎣e

ln(
σ2

i+1
σ2

i

)·σ2
i

σ2
i
−σ2

i+1 − e

ln(
σ2

i+2
σ2

i+1
)·σ2

i+2

σ2
i+1−σ2

i+2

⎤
⎥⎥⎦ +

+ e

ln(
σ2

M−1
σ2

M−2
)·σ2

M−2

σ2
M−2−σ2

M−1 (10)

σ2
0 and σ2

M−1 are not subject to optimization as they are set to
the minimum and maximum powers derived from the system
energy constraints with σ2

0 = 0 and σ2
M−1 = the maximum

transmit power. With the help of the σ2
0 = 0 and the virtual

signal power σ2
M = ∞, the expression (10) can be written in

an more compact form:

Pd =
M−2∑
i=0

⎡
⎢⎢⎣e

ln(
σ2

i+1
σ2

i

)·σ2
i

σ2
i
−σ2

i+1 − e

ln(
σ2

i+2
σ2

i+1
)·σ2

i+2

σ2
i+1−σ2

i+2

⎤
⎥⎥⎦

(11)

The expression (11) must be maximized by choosing the op-
timal σ2

i ; 1 < i < M − 2. Therefore, We take out all contri-
bution of (10) with terms containing σ2

i and understand σ2
i−1

and σ2
i+1 as parameters:

Pd,σ2
i−1,σ2

i+1
(σ2

i ) = −e

ln(
σ2

i
σ2

i−1
)·σ2

i

σ2
i−1−σ2

i + e

ln(
σ2

i
σ2

i−1
)·σ2

i−1

σ2
i−1−σ2

i

−e

ln(
σ2

i+1
σ2

i

)·σ2
i+1

σ2
i
−σ2

i+1 + e

ln(
σ2

i+1
σ2

i

)·σ2
i

σ2
i
−σ2

i+1 (12)

One can see that this expression only depends on σ2
i−1, σ

2
i and

σ2
i+1. We can therefore take the local maximum solutions and

combine them in a vector maximizing (11). We prove in Ap-
pendix A that the optimal signal constellation (with respect
to minimum total error) is achieved, when the powers of the
received symbols fulfill the iterative condition:

σ2
i = k · σ2

i−1 with 1 < i < M ; k > 1, k ∈ R (13)

For the optimal signal constellation, we apply (6) in (13) and
resolve for a rule how the transmitters should chose their sym-
bols:

σ2
Si

=
k(σ2

N + Nα2σ2
Si−1

) − σ2
N

Nα2
(14)

For this solution it is required that the transmitters know the
number of nodes N and the noise level in the receiver, which
is not automatically the case. But we can simplify (14) if we
assume σ2

SM−1
� σ2

S0
� σ2

N (and do not choose σ2
0 = 0!):

σ2
Si

≈ k · σ2
Si−1

and k ≈ (M−1)

√
σ2

SM−1

σ2
S0

(15)

5. CONCLUSION

Fig. 2. Example signal constellation in the I-, Q-plane for
traditional (left) and cooperative (right) transmission

With (14), we derived the optimal signal constellation for
an M-ary signal constellation using non-coherent cooperative
transmission. Our optimality criterion (7) for minimal symbol
error was accompanied with the contraint of a given maximal
power for σ2

M−1, shown as the dotted line in figure 2. Fur-
ther, with (15), we give a practical approximation. In figure
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2, we illustrate an example result of a 4-ESK compared to
a traditional 4-ASK. Using these ESK- symbols and a non-
coherent cooperative transmission, the far receiver has an op-
timal symbol constellation when using an ML- energy detec-
tor. It is also important to remember, that we don’t assume
the oscillations to be negligible during the duration of one
symbol. These oscillations cause the rayleigh-distribution of
the received amplitude (5) of one symbol as a result of many
superimposed statistics.

6. ACKNOWLEDGMENT

The work presented in this paper was partially funded by the
European Community through the projects CoBIs (contract
no. 4270) and RELATE and by the Ministry of Economic
Affairs of the Netherlands through the BSIK project Smart
Surroundings under contract no. 03060.

7. REFERENCES

[1] J. Barros and S. D. Servetto, “Network information
flow with correlated sources,” in (Submitted to the IEEE
Transactions on Information Theory).

[2] Y.-S. Tu and G. Pottie, “Coherent cooperative transmis-
sion from multiple adjacent antennas to a distant station-
ary antenna through awgn channels,” in Proceeding of the
IEEE VTC Spring 02, Birmingham, Alabama, USA, May
2002.

[3] D. III, G.Prince, and J. McNeill, “Method for carrier fre-
quency and phase synchronization of two autonomous
cooperative transmitters,” in 5th IEEE Signal Processing
Advances in Wireless Communications (SPAWC) 2005.

[4] A. Scaglione and Y.-W. Hong, “Opportunistic large ar-
rays: Cooperative transmission in wireless multihop ad
hoc networks to reach far distances,” IEEE Transaction
on Signal Processing, vol. 51, no. 8, August 2003.

[5] B. Sirkeci-Mergen and A. Scaglione, “Signal acquisition
for cooperative transmissions in multi-hop ad-hoc net-
works,” in Proceeding of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP),
Montreal, Canada, May 2004.

A. APPENDIX

To find the global maximum of (11), we substitute:

a =

√
σ2

i+1

σ2
i−1

the arbitrary parameter (16)

x =

√
σ2

i σ2
i

σ2
i−1σ

2
i+1

the new variable (17)

A general condition is that σ2
i−1 < σ2

i < σ2
i+1 and with (16)

and (17) we see that 1
a < x < a. Further, with σ2

i+1 ≥ σ2
i

follows: a > 1. With (16), (17) in (12) we define:

ga(x) := −e
ln(ax)
1

ax
−1 + e

ln(ax)
1−ax − e

ln( a
x

)
x
a

−1 + e
ln( a

x
)

1− a
x (18)

f(y) := y
1

1−y − 1
y
· y 1

1−y

⇒ ga(x) = f(ax) + f(
a

x
) (19)

q(y) :=
∂f(y)

∂y
· y = y

−1
y−1

ln y

y − 1
(20)

so that

d f(ax)
d x

= q(ax)
1
x

and
d f(a

x )
d x

= −q(
a

x
)

1
x

(21)

and

d ga(x)
d x

=
1
x

(
q(ax) − q(

a

x
)
)

(22)

It can be shown that q(y) is a strictly monotonic decreasing
function for y > 1:

q′(y) = y
−1

y−1︸ ︷︷ ︸
>0

>0︷ ︸︸ ︷
1

y(y − 1)3(
(y − 1)2 − (y2 − 1) ln y + y ln2 y

)︸ ︷︷ ︸
=:r(y)

(23)

and r(y) < 0 for y > 1, as

r(1) =
d r

d y
(1) =

d2 r

d y2
(1) = 0

and
d3 r

d y3
=

−2
y3︸︷︷︸
<0

(y2 − 1 + y ln y)︸ ︷︷ ︸
=:s(y)

and s(1) = 0, s′(y) = 2y + lny + 1 > 0 for y > 1. Knowing
q′(y) < 0 for y > 1 and going back to (21) and (22), we see:

x > 1 : ax >
a

x
⇒ q(ax) < q(

a

x
) ⇒ d ga

dx
< 0

x < 1 : ax <
a

x
⇒ q(ax) > q(

a

x
) ⇒ d ga

dx
> 0

x = 1 : ax =
a

x
⇒ d ga

dx
= 0

meaning that x = 1 is the global maximum of ga(x). Reap-
plying x = 1 in (17) results in :

σ2
i+1

σ2
i

=
σ2

i

σ2
i−1

(24)

considering that σ2
i > σ2

i−1, we find (13) to fulfil (24).
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