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ABSTRACT

We propose an efficient algorithm that computes the maxi-
mum achievable rate of a decode-and-forward multi-relay co-
operative system with orthogonal transmissions under total
power constraint. In [1] we have argued that in a system with
Q relays the optimum rate can be found by solving Q convex
problem despite the fact that the optimization problem is not
convex and it belongs to a class of problems with variational
inequality constraints. In this paper we show that the num-
ber of computations can be reduced from solving Q convex
problem to solving only �log(Q)� + 1 convex problems. The
proposed algorithm facilitates comparisons with competing
alternatives in cooperative systems such as the amplify-and-
forward or the compress-and-forward strategies.

1. INTRODUCTION

The capacity of the Gaussian relay channel remains an un-
known even though considerable progress has been made since
the seminal work by Cover and El Gamal in [2], which by
establishing essential capacity bounds in the relay channel
opens the door for network information theory. The work
in [2] has also brought forward two relaying strategies: the
decode-and-forward (DF) strategy in which the relay is re-
quired to perfectly decode the information symbols received
from the source before forwarding them to the destination and
the compress-and-forward (CF) strategy in which the relay
sends a compressed version of the received symbols to the
destination. The later approach has been also used by [3] to
establish the ergodic capacity of the flat fading relay channel
when the relay is close enough to the destination. In addi-
tion, [3] generalizes the bounds of [2] to the multi-relay chan-
nel. Other notable information theoretic results in the multi-
relay channel could be found in [4–8].

In this paper we depart from the classical multi-relay setup,
where the cooperative radios transmit using the same chan-
nel resources, by considering orthogonal transmissions from
the Q relays available in the system. Using frequency divi-
sion it is possible to split the channel from the source to the
relays and the receiver into Q + 1 frequency bands or simi-
larly split the channel to the receiver from the relays and the
source. The first approach has been analyzed in [9], where

it has been shown that the generalized block Markov coding
strategy of [2] achieves capacity for Q = 1. Because for the
second approach, which is the focus of this paper, the capac-
ity achieving relaying strategy is unknown, we suggest com-
puting the maximum achievable rate under the constraint that
relays are required to use a DF modus operandi. The prob-
lem formulation is similar to [10, 11], i.e, the achievable rate
of a cooperative system with orthogonal transmissions from
the relays is maximize under a total power constraint. How-
ever, the optimum rate/power allocation results in both [10]
and [11] are obtained in a wideband orthogonal DF system
derived by letting the channel bandwidth go to infinity. This
approach yields a solution where no more than one relay is
allowed to transmit at one moment in time. In this paper we
analyze the case of finite channel bandwidth and show that
the optimum power allocation, which can be found in poly-
nomial time, is a water-filling solution given the set of active
relays. In addition, we improve on the algorithm proposed
in [1] by showing that the global optimum can be found by
solving only �log(Q)� + 1 convex problems, ��̇ denotes the
integer ceil operation.

2. SYSTEM MODEL

We consider a wireless communication system where Q inter-
mediary relays, {Rq}Q

q=1 help the source communicate with
the destination. The Q relays decode the information sym-
bols received from the source and forward the decoded sym-
bols to the destination. The source and the relays use or-
thogonal transmissions, such as time or frequency division
multiplexing (TDM or FDM), to communicate interference-
free with the destination. The TDM or the FDM cooperative
scheme could be envisioned as an initial upgrade to current
cellular systems using time or frequency division multiple ac-
cess, where idled users situated in the vicinity of an active
user would operate as relays. In addition, the orthogonality
of the transmitted signals enforces the half-duplex constraint
and eliminates possible inter-relay interference.

A relay discovery protocol, which is not the topic of this
paper, is run regularly to insure that all the users have discov-
ered their peers. The protocol also updates the user channel
state information matrix, which contains information about
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the quality of all the communication paths in the system. Be-
fore we proceed with the channel model description, we sim-
plify the exposition by focusing only on the information sym-
bol transmitted by the source at time i since with orthogonal
transmissions the signals received by the destination are not
affected by relay induced inter-symbol interference. The in-
formation symbol xs, broadcasted by the source with average
power ε0, is received both at the relays and at the destination.
The relays reconstruct the sequence of symbols transmitted
by the source. The sequence is re-encoded and forwarded to
the destination as it is illustrated by multi-relay channel model
depicted in Fig. 1.

Under the assumption that all links in Fig. 1 are affected
by multiplicative fading, we can describe the cooperative sys-
tem using the input-output equation for the one-hop propaga-
tion between the source and the destination, i.e.,

yd0 = hsdxs + zd0 , (1)

and the equations for the Q parallel two-hop links via the re-
lays

yrq
= hsrq

xs + zrq

ydq
= hrqdxq + zdq

, q ∈ {1, ..., Q}, (2)

where the average power of the symbol transmitted by the re-
lay Rq is εq = E[|xq|2], q ∈ {1, ..., Q}. We assume that the
channel between the source and the destination, hsd, the chan-
nels between source and the relays, i.e., {hsrq

}Q
q=1, and the

channels between the relays and the destination,
{
hrqd

}Q

q=1
,

are fixed (time-invariant) and known to all terminals in the
network. We also assume that the additive noises

{
zrq

}Q

q=0
,

{
zdq

}Q

q=1
are independent and complex Gaussian-distributed

with independent and identical distributed real and imaginary
components. To account for possibly different noise powers
at the relays and the destination, we take the variance of zrq

to
be Nr/2 per dimension for any q ∈ {1, ..., Q}, and the vari-
ance of zdq to be N0/2 per dimension for any q ∈ {0, ..., Q}

Having introduced the system model, we can informally
state the problem. Given that the relays decode perfectly the
transmissions from the source, we want to find the maximum
achievable rate between the source and the destination subject
to the power constraint

εT ε � P, (3)

where ε := [ε0, ε1, ..., εQ]T . One may argue at this point
that, instead of a total power constraint, individual power con-
straints should be set for each relay since the relays use sepa-
rate batteries. Nevertheless, it is possible to show that, given
a functional symmetry in the network, (i.e., as time evolves
each relay becomes a source and vice-versa) optimizing power
over many symbols, i.e., across time, for each relay is equiva-
lent to optimizing power per symbol across space, i.e., among
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Fig. 1. The multi-relay channel with orthogonal transmis-
sions.

relays with a total power budget as in (3). Before we can
mathematically formulate the optimization problem, we need
to elaborate on the proposed setup.

We assume that there is no collaboration between relays,
i.e., relays do not acquire any information about the signals
received from the source by the other relays. Any active relay
Rq (i.e., any Rq for which εq > 0) should be able to decode
the message xs broadcasted by the source. This is possible if

R < I(xs; yrq
), q ∈ AQ, (4)

where AQ ⊆ {1, ..., Q} is the index set for the active relays.
In order to perfectly decode at the destination the orthogonal
transmissions sent by the source and the relays, it is required
that in addition to (4)

R < I(xs,xr;yd), (5)

where xr := [x1, . . . , xQ] and yd := [yd0 , yd1 , ..., ydQ
]T .

From (4) and (5) we find that the maximum achievable rate
for the multi-relay channel with perfect decoding at the re-
lays is

R∗ = max
p(xs, xr)

min
{
{I(xs; yrq )}q∈A∗

Q
, I(xs,xr;yd)

}
.

(6)
where A∗

Q is an optimum index set for the active relays.
Considering that the transmitted signals propagate through

white Gaussian noise links, and are subject to the total average
energy per symbol constraint in (3), we specialize the mutual
information in (4) and (5) to obtain the achievable rate

R∗ = max
ε0+

∑
q∈A∗

Q
εq�P

min
{
{Rq(ε)}q∈A∗

Q
, Rs(ε)

}
, (7)

where

Rq(ε) := log(1 + γsrq
ε0), q ∈ A∗

Q,

Rs(ε) := log(1 + γ0ε0) +
∑

q∈A∗
Q

log(1 + γqεq),

γsrq
:= |hsrq

|2/Nr, γ0 := |hsd|2/N0, and γq := |hrqd|2/N0,
q ∈ {1, ..., Q}. In the next section we present an efficient
approach for solving the problem in (7).
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3. AN EFFICIENT ALGORITHM FOR OPTIMUM
POWER ALLOCATION

Before describing the algorithm, we borrow a lemma from [1]
that could reduce the size of the optimization problem in (7)
and for completeness we also outline its proof.

Lemma 1. If there exists a set of relays {Ri | i ∈ IQ ⊂
{1, ..., Q}} such that γsri � γ0 for i ∈ IQ, then the relays
{Ri | i ∈ IQ} are not part of the optimum set of active relays,
i.e., IQ ⊆ A∗

Q
c, where A∗

Q
c is the complement of A∗

Q.

Proof. The proof is by contradiction. Let us assume that IQ

and A∗
Q are not disjoint. Hence, there exist a non-empty set

I ′Q ⊆ IQ such that I ′Q ⊆ A∗
Q. Let us select i′ ∈ I ′Q and be-

cause relay Ri′ is active, R∗ < log(1 + γsri′ ε0). However, if
all relays Ri with i ∈ I ′Q are powered off, then R∗ > log(1 +
γ0ε0). In the statement of Lemma 1 we assume γ0 � γsri′ ,
and therefore, R∗ > log(1+γ0ε0) � log(1+γsri′ ε0) > R∗,
which is a contradiction.

As observed in [1], Lemma 1 suggests that a simplifica-
tion of the call setup procedure for the cooperative system can
be obtained by excluding distant relays.

The epigraphic form of the optimization problem in (7) is

minimize − R

subject to

R � log(1 + γ0ε0) +
Q∑

q=1

log(1 + γqεq)

1(εq)R � log(1 + γsrqε0), q ∈ {1, ..., Q}
Q∑

q=0

εq = P and εq � 0, q ∈ {1, ..., Q},

(8)

where 1(εq) = 1 if εq > 0 and 1(εq) = 0 if εq = 0 is an
indicator function for the activity of relay Rq.

The problem in (8) is not convex. If we rewrite the in-
equalities 1(εq)R � log(1 + γsrq

ε0), q ∈ {1, ..., Q}, in (8)
as εq

(
R − log(1 + γsrq

ε0)
)

� 0, q ∈ {1, ..., Q}, we can
easily see that (8) belongs to the class of problems with vari-
ational inequality constraints, which in general are difficult to
solve [12].

The difficulty in (7) (or (8)) comes from trying to establish
the optimum set of active relays, i.e., A∗

Q. If we fix the set of

active relays, i.e., fix AQ = ÃQ, then (8) becomes

minimize − R

subject to R � log(1 + γ0ε0) +
∑

q∈ÃQ

log(1 + γqεq)

R � log(1 + γsrqε0), q ∈ ÃQ∑

q∈ÃQ

εq = P and εq � 0, q ∈ ÃQ,

(9)

which is a convex problem. Since there are 2Q possible AQs,
one actually needs to solve 2Q convex problems, which yield
the rates {R∗

p}2Q

p=1. The maximum rate, R∗, and correspond-
ingly the optimum power allocation, could be found by taking
the maximum over all R∗

ps. Of course, we do not advocate
solving 2Q convex problems, since the complexity of the al-
gorithm increases exponentially with the size of the problem.
In [1] we have solved a similar problem and argued that a so-
lution to (7) can be found by solving Q convex problems. We
improve on our previous result in the following theorem.

Theorem 1. If γsri
�= γsrj

for any i �= j, with i, j ∈ {1, ..., Q},
then the solution to the problem in (7) can be found by solving
at most �log2(Q)� + 1 convex problems.

Proof. The proof is based on observing that the set of inequal-
ities 1(εq)R � log(1 + γsrq

ε0), q ∈ {1, ..., Q} in (8) can be
reduced to one inequality. Without loss of generality, let us
assume that γsrq+1 � γsrq for q ∈ {1, ..., Q − 1}. Using the
monotonicity of the logarithm, we can write log(1+γsrq+1) �
log(1 + γsrq

) for q ∈ {1, ..., Q − 1}, and replace the set of
inequalities

1(εq)R � log(1 + γsrq
ε0), q ∈ {1, ..., Q}, (10)

in (8), which introduce problematic complementary condi-
tions, with

R � log(1 + γsrq∗ ε0), (11)

where q∗ is the minimum relay index in the optimum set
of active relays, i.e., q∗ = min{q | q ∈ A∗

Q}. We do not
know the optimum set of active relays, but we know that
q∗ ∈ {1, ..., Q}. So instead of solving (9) for all choices
of AQ, we can solve the convex problem

minimize − R

subject to

R � log(1 + γ0ε0) +
Q∑

q=q̃

log(1 + γqεq)

R � log(1 + γsrq̃
ε0)

Q∑
q=q̃

εq = P and εq � 0, q � q̃,

(12)

for all choices of q̃. For each q̃ ∈ {1, ..., Q} we obtain a
rate R∗

q̃ by solving (12). The optimum rate R∗ = max{q̃ ∈
{1, ..., Q}| R∗

q̃}, requires solving (12) Q-times.
We want to point out that as q̃ varies, the two constraints

on rate R in (12) move in opposite directions. For example, as
q̃ increases, log(1 + γ0ε0) +

∑Q
q=q̃ log(1 + γqεq) decreases,

while log(1 + γsrq̃ε0) increases. Consequently, when q̃ in-
creases, the behavior of the dominant constraint on R (i.e.,
the strongest of the two constraints in (12)) can be split in
3 successive stages, which may not all take place: stage 1)
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becomes more relaxed; stage 2) does not change; stage 3) be-
comes tighter.

Therefore, as q̃ increases, R∗
q̃ , which is a function of q̃, in-

creases, becomes constant, and then decreases, where any one
or two of these stages may not take place. If we extend the
definition of strictly quasi-convexity to functions with a dis-
crete domain, we conclude that R∗

q̃ is a strictly quasi-concave
function of q̃. Note that without γsri

�= γsrj
in the theo-

rem’s statement, we can only guarantee quasi-concavity, but
not strict quasi-concavity. There is no need to enumerate all
q̃ as we have done previously since we only need to look for
any maximum R∗

q̃ as a function of q̃. This can be done using
bisection and running (12) only (�log(Q)� + 1)-times.

Algorithm. Solve (12) for q̃ at midpoint, i.e., q̃ = q̃mid :=
�Q/2� and for q̃ at midpoint minus one, i.e., q̃ = q̃mid − 1.
Compare Rq̃mid and Rq̃mid−1. If Rq̃mid > Rq̃mid−1, then an
optimum q̃ = q∗ is in the set {q̃mid, ..., Q}. Otherwise, q∗ is
in the set {0, ..., q̃mid − 1}. At each iteration the algorithm
produces an interval that contains q∗, but it is half the size of
the original interval. The algorithm ends when an optimum q
is located.

From (12) we can easily remark that given the optimum
set of active relays the solution follows the water-filling prin-
ciple. It can also be easily generalized to the bandwidth con-
straint problem. Given the bandwidth set {W0,W1, ...,WQ}
for the FDM channel, one needs to replace the rate constraints
in (8) with R � W0 log(1 + γ0ε0/W0) +

∑Q
q=1 Wq log(1 +

γqεq/Wq), 1(εq)R � Wq log(1 + γsrq
ε0/Wq) and follow an

approach similar to the one described in the proof of Theorem
1.

Simulations (see [1]) suggest that only a few relays are
required to achieve most of the rate advantage provided by
the cooperative setup. Similar to multi-relay systems with in-
terfering transmissions, the decode-and-forward scheme with
orthogonal transmissions yields a higher rate than its amplify-
and-forward (AF) counterpart if the relays are sufficiently close
to the source. Unlike the AF scheme, which does not bene-
fit significantly from the optimization process, assigning the
optimum powers to the regenerative relays leads to a consid-
erable rate increase for the DF scheme when compared to the
equal power allocation setup.

4. CONCLUSIONS

In this paper we have focused on a decode-and-forward co-
operative system with orthogonal transmissions and we have
analyzed its achievable rate for the case when the relays do
not collaborate with each other. We have shown that the max-
imum achievable rate for a system with non-collaborative re-
lays can be found in log-polynomial time despite the fact that
the optimization problem is not convex and it belongs to a
class of problems with variational inequality constraints. Pre-
liminary simulations show that DF benefits considerably from

the optimization process. However, using more than a couple
of relays brings a minimal rate advantage for the DF setup.
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