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ABSTRACT

We study the problem of designing distributed space-time codes
for cooperative communication. A major challenge in dis-
tributed cooperative transmissions is to find a way to coor-
dinate the relay transmissions without requiring extra control
information overhead. Most of the previous works on the sub-
ject assume each node emulates a predetermined antenna of a
multiple-antenna system. However, this requires a centralized
“antenna allocation” procedure. Here, we introduce random-
ized strategies that decentralize the transmission of a space
time code from a set of distributed relays. The simple idea
we propose is to let each node transmit a random linear com-
bination of the codewords that would be transmitted by all
the antennas in a centralized space time coding scheme. We
provide different code designs that achieve the diversity order
(min(N, L)) when number of nodes N is different than the
number of virtual antennas L. In this paper, we focus on the
case when N = L and we show that under certain designs the
achieved diversity order is fractional.

1. INTRODUCTION

Space-time codes over multiple antenna systems provide di-
versity and coding gains and hence improve the communi-
cation performance over fading channels. However, multiple-
antenna systems are impractical for distributed large-scale net-
works due to size and hardware constraints. Recently, sev-
eral methods have been proposed for cooperation among relay
nodes that are able to provide spatial diversity gains without
utilizing multiple transmit antennas at the terminals. Most
of the distributed space-time codes proposed for cooperative
networks are not truly distributed protocols; they require a
central control unit or prior coordination between the nodes
[1–4]. In large-scale distributed wireless network, the set of
cooperating nodes is unknown or random in most scenarios
and the cooperative transmission scheduling is problematic.
In [5, 6], the authors propose diversity schemes that do not
require the knowledge of the number of cooperating nodes.
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To the best of our knowledge, the approaches that apply to a
decentralized scenario are the ones in [7–9].
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Fig. 1. Single and Distributed MISO systems

We propose a novel and simple methodology to decentral-
ize the relay transmissions and yet obtain diversity and coding
gains analogous to those that can be attained on a point-to-
point multiple-antenna links. In the proposed scheme, each
node uses a random linear combination of the columns of an
underlying space-time code. Our scheme can be viewed as a
randomized version of the distributed space-time codes [4,6].
The purpose of randomization is, as mentioned before, to
eliminate the need for antenna allocation. Similar to [5, 6],
the proposed method does not require the knowledge of the
number of cooperating nodes. Compared to [7, 9], we are
able to characterize precisely the degree of diversity that we
should expect.

In [10, 11], we provide designs that achieve full diversity
under the condition N �= L, where N is the number of coop-
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erating nodes and L is the number of virtual transmit anten-
nas. We show that, despite code randomization, the proposed
scheme achieves full diversity (N ) if N < L, and the diver-
sity order L is achieved for N > L. In this paper, we show
that the diversity order depends on the behavior of the eigen-
value distribution of the matrix RRH around zero, where
R = [r1 r2 . . . rN ], and ri denotes the randomization co-
efficient vector for the i’th node. Interestingly, we are able
to prove that, in contrast to the multi-antenna systems, certain
randomization matrices R provide fractional diversity orders.

The paper is organized as follows: In Section 2, we present
the proposed scheme. In Section 3, we provide an upper
bounds on the average error probability and using this up-
per bound, we propose sufficient conditions on the eigenvalue
distributions to achieve full diversity order. In Section 4, we
present the simulations. Finally, we conclude in Section 5.

In the following, det(A) denotes the determinant of a ma-
trix A. The identity matrix is denoted by I.

2. PROPOSED DIVERSITY SCHEME

Let s = [s0 s1 . . . sn−1] be the block of source symbols to be
transmitted to the destination. We assume that the message is
known perfectly at the active nodes, hence they are responsi-
ble for the retransmission to the destination. We will consider
the transmission of one block of data for simplicity. In the fol-
lowing, we describe the processing at each node and analyze
the decoding performance at the destination.

At each node, the s is mapped onto a matrix G(s) as done
in standard space-time coding:

s → G(s),

where G is a P × L space-time code matrix. Here, L de-
notes the number of virtual antennas. In our scheme each
node transmits a block of P symbols, which is a random linear
combination of columns of G(s). Let ri be the L× 1 random
vector that contains the linear combination coefficients for the
i’th node. Define X = [x1 x2 . . .xN ] as the P × N random
code matrix whose rows represent the time and columns rep-
resent the space, where xi = G(s)ri is the code transmitted
by the i’th node. The randomized space time coding can be
formulated as the double mapping:

s → G(s) → G(s)R, (1)

where R = [r1 r2 . . . rN ]. In the following, the L × N ma-
trix R will be referred as the randomization matrix. Since
each node’s processing is intended to be local, ri’s should be
independent for each i = 1 . . . N , and we will also assume
that they are identically distributed. This property allows the
randomized space-time coding to be implemented in a decen-
tralized fashion. In other words, each node chooses a random
set of linear combination coefficients from a given distribu-
tion, which does not depend on the node index.

Let y be the received signal at the destination. We as-
sume that the delay spread of the channel of each user plus
the time offset at that user amounts to a coherence bandwidth
that is much larger than the transmission bandwidth. Under
this assumption, we can write the received signal as

y = G(s)Rh + w, (2)

where w ∼ Nc(0, N0I) and h ∼ Nc(0,Σh). In our analysis,
we assume that Σh = I, but the results hold as long as the Σh

is positive definite. In [6], the authors propose that the nodes
transmit a deterministic linear combination of the columns of
a space-time code matrix; hence, (2) is similar to the system
model in [6].

In order to perform coherent decoding, the receiver needs
to estimate the channel coefficients. Instead of estimating
the channel vector h and the randomization matrix R sep-
arately, the receiver can estimate the effective channel coeffi-
cients h̃ � Rh . For this, the training data at the transmitters
should use the same randomization procedure.

Traditional space-time codes are designed using the prob-
ability error as a performance criterion [12]. In the next sec-
tion, we will adopt a similar approach for the design of ran-
domized space-time codes.

3. DESIGN OF RANDOMIZED SPACE-TIME CODES

Let M = {s1, s2, . . . s|M|} be the message set, and Gi � G(si).
Let the randomization matrix R be fixed for every choice of
code matrix. Let SNR = 1/N0, where N0 is the variance
of the additive white Gaussian noise per complex dimension
(see Eqn. 2). In the following, we assume that the determin-
istic space-time code matrix G is P × L such that P ≥ L.
And the randomization matrix R is L × N , where N is the
number of cooperating nodes. Also, we say an L × N matrix
A is full-rank if rank(A) = min{L,N}.

Definition The diversity order d∗ of a scheme with probabil-
ity of error Pe(SNR) is defined as

d∗ = lim
SNR→∞

− log Pe(SNR)
log SNR

. (3)

We say that the randomized space-time code achieves the di-
versity order d if d ≤ d∗. Note that d∗ ≤ min{N, L} for the
proposed scheme.

Define r � min{L,N}. In the following, we provide
lower bounds to d∗, and when the lower bound is equal to r,
we say that the scheme has diversity order d∗ = min(L,N).

Using the union bound, the average probability of error
can be upper bounded by the pairwise probability of errors
assuming that all source messages si ∈ M are equally likely:

Pe ≤ 1
|M|

∑
sk∈M

∑
si∈M,i �=k

Pr(sk → si), (4)
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where Pr(sk → si) denotes the probability that a transmitted
message sk is mistaken for another message si. Let sk ∈
M denote the transmitted symbol. For the system given by
Eqn. 2, assuming i.i.d. Rayleigh Fading i.e., h ∼ Nc(0, I),
the pairwise error probability of coherent detection (averaged
over {R,h}) is bounded as,

Pr{sk → si} ≤ ER
{

1
det(I + SNR/4 RHAkiR)

}
, (5)

where Aki = (Gk − Gi)H(Gk − Gi). Using (4) and (5),
the average probability of error Pe is bounded above by P̄e,
where

P̄e � ER
{

|M| − 1
min(k,i){det(I + SNR/4 RAkiRH)}

}
.

(6)
The following theorem allows us to separate the design of
the deterministic space-time code G and the randomization
matrix R.

Theorem 1 Let r = min{L,N}. Assume the scheme satis-
fies the following condition:

C1) The Rank Criterion for G: For any pair of space-time
code matrix {Gk, Gi}, the matrix (Gk−Gi) is full-rank,
i.e., of rank L.

Then, Pe is bounded as

Pe ≤ max(1, α−L)(|M|−1) ER
{

1
det(I + SNRRRH)

}
︸ ︷︷ ︸

� P̃e

,

(7)
where α = min(k,i) λ2

k,i/4 such that λk,i is the smallest sin-

gular value of (Gk −Gi). Moreover, the diversity order of P̃e

(Eqn. 7) and the diversity order of P̄e (Eqn. 6) are the same,
i.e.,

lim
SNR→∞

− log P̄e

log SNR
= lim

SNR→∞

− log P̃e

log SNR
(8)

Proof Proof is skipped for brevity. See [10] for details.

The condition C1 is equivalent to the rank criterion for the
deterministic space-time codes [12] that achieves maximum
diversity. There is a vast literature on the design of deter-
ministic space-time codes which can be utilized directly. In
this context, by choosing an existing space-time code matrix
G designed for multiple-antenna system, we can easily sat-
isfy C1. In the rest of the paper, we assume the deterministic
space-time code G satisfies the condition C1 in Theorem 1.

Definition We say that a non-negative function f(SNR) =
Θ(xα) as x→0 if there exist ε > 0 and positive constants 0 <
c1 < c2 such that |x| < ε implies c1x

α ≤ f(SNR) ≤ c2x
α.

Note that, the upper bound in (7) can be expressed in
terms of eigenvalues of RRH . In the following, we will
express the diversity order of P̃e in terms of the asymptotic
expansion of the pdf of the eigenvalues of RRH .

Theorem 2 Let S = {λ1, . . . , λr} be the unordered set of
eigenvalues of RRH . Let f(λ1, . . . , λr) be the joint density
for the eigenvalues. Assume there exists constants {γik >
−1, k = 1 . . . r, i = 1 . . . M} and {Ci > 0, i = 1 . . . M} for
some M such that

f(λ1, . . . , λL) = Θ(
M∑
i=1

Ciλ
γi1
1 λγi2

2 . . . λγir

ir ) (9)

is satisfied for λ1, λ2, . . . , λr in a small neighborhood of the
origin. Then the P̃e has diversity order d where

d = min
k

r∑
i=1

min(1, 1 + γki). (10)

And the scheme also achieves this diversity order.

Proof Proof is skipped for brevity. See [10] for details.

Theorem 2 fully characterizes the diversity order of P̃e.
In addition, Theorem 2 presents an interesting result, which
is the possibility of fractional diversity orders. Depending on
the values of {γik}, the diversity order d can be rational num-
ber. If P̃e is tight then the diversity order of the randomized
space-time codes is fractional! Note that, if Eqn. 9 is satisfied
for γik > 0,∀i, k, then the scheme achieves diversity order
d = min(N, L).

Theorem 3 Consider the randomized space-time code utiliz-
ing a uniform phase randomization matrix R = [r1 r2] such

that rk = [exp(jθk1) exp(jθk2)]t, where θkn
i.i.d.∼ U(−π, π)

for n, k ∈ {1, 2}. Assume that condition C1 is satisfied. Then,
the diversity order of the scheme is d∗ = 1.5.

Proof Proof is avoided for brevity. See [10] for details.

4. SIMULATIONS

In this section, we present the performance of proposed ran-
domized distributed space-time codes. We obtain the aver-
age probability of error through Monte-Carlo methods and
validate the conclusions drawn in our analysis. We compare
the performance of randomized schemes with the centralized
space-time codes for different values of N and L. In the fol-
lowing, we assume the nodes channel gains to the destination
are i.i.d., i.e., hk ∼ Nc(0, 1).

In the following, we evaluate the performance of Alam-
outi scheme under different randomization methods and com-
pare it with a centralized space-time coding. Let ri be the i’th
column of the randomization matrix R. The randomization
is done in there different ways:
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i) Uniform phase randomization: each element of ri is
equal to ejθ where θ is a random variable uniformly
distributed in [0, 2π).

ii) Gaussian randomization: ri’s are zero-mean indepen-
dent complex Gaussian vectors with covariance I.

iii) Uniform spherical randomization: ri’s are chosen as
zero-mean independent complex Gaussian vectors with
covariance I, and then normalized to have the norm
||ri|| = 1.

In the centralized Alamouti, half of the nodes choose to
serve as the first antenna, and the other half choose to serve
as the second antenna (if N is odd, at one of the nodes the
power is equally distributed between two virtual antennas).
The transmission power of each node is normalized so that
the comparison among the schemes is fair.
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Fig. 2. Average Probability of Error versus SNR (dB) under
the Alamouti scheme where L = 2 and N = 2

In Figures 2, we plot the average probability of error with
respect to SNR = 1/N0 for N = 2. For N = 2, the central-
ized scheme has diversity order d∗ = 2 and the performance
is better than the decentralized schemes. We observe that the
randomized schemes have diversity order 1 ≤ d∗ ≤ 2. From
theoretical analysis, we know that the diversity order of uni-
form phase randomization is d∗ = 1.5.

5. CONCLUSION

In this paper, we proposed a decentralized space-time coding
protocol for distributed networks. Our scheme is based on
independent randomization done at each node. We showed
that performance of the scheme in terms of diversity depends
on the eigenvalue distribution of the randomization matrix
around zero. Furthermore, we presented examples where the

diversity order is fractional for N = L, where N is the num-
ber of nodes and L is the number of virtual antennas.
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