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Abstract— We consider a regenerative differential modulation
scheme for wireless networks with relays to seek cooperative
diversity. We examine the performance of a differential binary
phase shift keying (BPSK) modulation scheme, referred to as the
differential decode-and-forward (DDF), for wireless relay networks
composed of one source, one relay and one destination node in
Nakagami-m fading channels. A regenerative relay differentially
decodes/encodes the received signal and forwards it to the
destination. A closed form bit error rate (BER) expression is
presented for the piece-wise linear (PL) detector. Both analytical
and simulation results show that the proposed DDF scheme
is capable of providing diversity gain in Nakagami-m fading
channels.

I. INTRODUCTION

Owing to the broadcasting nature of the wireless medium,

transmission from a source node in a wireless network may

be heard by nodes in the neighborhood. These neighbor nodes

may act as wireless relays and provide alternative communi-

cation routes that give rise to cooperative diversity. Practical

cooperative techniques were proposed and investigated in

[1]. Several low-complexity, uncoded cooperative transmission

schemes were discussed in [2] for the case of known channel

state information (CSI) to transmitters and receivers, including

an amplify-and-forward (AF) scheme by which relays am-

plify the received signal subject to an instantaneous power

constraint and retransmit it to the destination, and a decode-
and-forward (DF) scheme that performs hard decisions at the

relays before retransmission.

The average bit error rate (BER) and outage probability

were examined in [3] for a two-hop, single-relay no diversity

system in Nakagami-m fading. A closed-form asymptotic

approximation of the average symbol error rate for multi-

branch multi-hop AF systems was obtained in [4]. Most of

the aforementioned studies focused on coherent detection,

assuming the CSI is available at the relays and destination.

However, channel estimation is known to be a challenging and

costly task, especially in time-selective fading environments.

In this paper, we examine the performance of a differential

decode-and-forward (DDF) scheme proposed in [5]. We as-

sume Nakagami-m fading, which includes Rayleigh fading as

a special case. A closed form BER is derived for the proposed

piece-wise linear (PL) detector.
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Fig. 1. A cooperative wireless relay system.

II. SYSTEM MODEL

A wireless relay network shown in Fig. 1 is composed

of one source S, one relay R and one destination D node,

where a sequence of symbols are to be transmitted from

S to D. To eliminate mutual interference, we assume time-

division multiplexing: that divides the transmission into two
distinct phases. During phase-I transmission, S transmits a

frame of information bits, while R and D listen. During phase-
II transmission, S is silent, while R transmits signals to D.

Consider using binary phase shift keying (BPSK) for phase-
I transmission. The information bits d(n) ∈ {±1} at S are first

differentially encoded:

s(n) = s(n − 1)d(n), n = 1, 2, · · · , N, (1)

where s(n) denotes the signal transmitted from S, s(0) = 1 is

the initial reference bit, and N is the number of bits within one

frame. The baseband signals received at R and D, respectively,

are

xr(n) = hs,rs(n) + wr(n), n = 0, 1, · · · , N, (2)

xd(n) = hs,ds(n) + wd(n), n = 0, 1, · · · , N, (3)

where hs,r and hs,d denote the corresponding fading coeffi-

cients, while wr(n) and wd(n) denote the channel noise.

For phase-II transmission, the signal received at D is given

by

yd(n) = hr,dsr(n) + ud(n), n = 0, 1, · · · , N, (4)
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where hr,d and ud(n) denotes the fading and channel noise,

respectively, and sr(n) is the signal transmitted by R.

For differential detection, the fading channels are assumed

(approximately) static over two bit intervals. The envelope of

channel, (|hi,j |), is assumed to be Nakagami-m distributed [6]:

p|hi,j |(r) =
2

Γ(mi,j)

(
mi,j

Ωi,j

)mi,j

r2mi,j−1e−mi,jr2/Ωi,j , (5)

where (i, j) ∈ {(s, r), (s, d), (r, d)}, mi,j ≥ 0.5 denotes

the fading parameter, and Ωi,j = E{|hi,j |2}. For values of

mi,j < 1, channel experiences severer fading than Rayleigh;

for values of mi,j > 1, fading severity is less than Rayleigh.

The channel noise wr(n), wd(n) and ud(n) are assumed

independent complex Gaussian random variables with zero

mean and variance N0. The instantaneous SNR between nodes

i and j, denoted by γi,j = |hi,j |2/N0, has distribution [6]:

pγi,j
(x) =

1
Γ(mi,j)

(
mi,j

γ̄i,j

)mi,j

xmi,j−1e−mi,jx/γ̄i,j , (6)

where γ̄i,j = Ωi,j/N0 denotes the average SNR between

nodes i and j. Finally, the channel coefficients are assumed

independent of one another and also of the channel noise.

III. A REGENERATIVE DDF RELAY SCHEME

To facilitate analysis, we briefly introduce the maximum

likelihood (ML) and the PL detectors in this section.

A. DDF Transmission at R

At relay R, the received signal is first differentially decoded

as follows:

d̃(n) = sign(�{x∗
r(n − 1)xr(n)}) n = 1, 2, · · · , N. (7)

Next, the decoded bits are re-encoded via a differential en-

coder:

sr(n) = sr(n − 1)d̃(n), n = 1, 2, · · · , N, (8)

with sr(0) = 1.

B. Differential Detection at D

Substituting (8) into (4), we have

yd(n) = yd(n − 1)d̃(n) + ṽ(n), (9)

where ṽ(n) � ud(n) − ud(n − 1)d̃(n) whose conditional

distribution is CN (0, 2N0). Since R makes hard decision in

(7), either a correct or wrong decision may occur. As a result,

the conditional PDF of yd(n) takes the form of Gaussian

mixture:

pyd(n)(y) =(1 − ε)Φc(y; yd(n − 1)d(n), 2N0)
+ εΦc(y;−yd(n − 1)d(n), 2N0),

(10)

where Φc(y;µ, σ2) denotes the PDF of a complex Gaussian

random variable with mean µ and variance σ2, and ε is the

average BER of differential BPSK in Nakagami-m fading

channels:

ε =
1
2

(
ms,r

γ̄s,r + ms,r

)ms,r

. (11)

Similarly, the conditional PDF of xd(n) is

pxd(n)(x) = Φc(x;xd(n − 1)d(n), 2N0). (12)

Note the independency of xd(n) and yd(n), and the mixture

distribution shown in (10). As a result, the ML detector takes

a nonlinear form. Specifically, it can be shown that the ML
detector for DDF is

f(t1) + t0
1
≷
−1

0, (13)

where

f(t1) = ln
(1 − ε)et1 + ε

εet1 + 1 − ε
, (14)

t1 =
q1

N0
, q1 = y∗

d(n − 1)yd(n) + yd(n − 1)y∗
d(n), (15)

t0 =
q0

N0
, q0 = x∗

d(n − 1)xd(n) + xd(n − 1)x∗
d(n). (16)

The nonlinear function f(t1) effectively “clips” large inputs

to ± ln[(1 − ε)/ε] and is approximately linear in between. In

particular, it was shown that f(t1) can be approximated by a

piece-wise linear (PL) function [7]:

fPL(t1) �

⎧⎪⎨
⎪⎩
−T1, t1 ≤ −T1

t1, −T1 ≤ t1 ≤ T1

T1, t1 ≥ T1

(17)

where T1 = ln[(1− ε)/ε] assuming ε < 0.5. This leads to the

following PL detector:

fPL(t1) + t0
1
≷
−1

0, (18)

which is easier to implement than the ML detector (13).

IV. PERFORMANCE ANALYSIS

A. Average BER of PL Detector

A BER analysis of the ML detector (13) for the proposed

DDF scheme is prohibitively complex due to its nonlinear

nature. Instead, we derive the average BER of the PL detector

(18), which closely matches the performance of the ML

detector (see Section V). As a result, our analysis also provides

a useful tool for the assessment of the ML detector.

The analysis is complicated by a decision statistic that

involves quadratic forms in Gaussian variates. Closed form

expressions of the distributions of such quadratic forms, in

general, are known only via series expansion [8].

Due to the symmetric nature of the problem, we can assume

without loss of generality that d(n) = 1 is transmitted from

S. A close examination of the PL detector indicates that the

error event can be represented using three mutually exclusively

events. Specifically, the conditional BER of the PL detector is

Pe(γs,d,γr,d) = Pr{t0 − T1 < 0|t1 < −T1, d(n) = 1}
× Pr{t1 < −T1|d(n) = 1}
+ Pr{t0 + T1 < 0|t1 > T1, d(n) = 1}
× Pr{t1 > T1|d(n) = 1}
+ Pr{t0 + t1 < 0,−T1 ≤ t1 ≤ T1|d(n) = 1}.

(19)
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Due to the space limitation, we skip rigorous mathematical

derivations, and we can show that the conditional BER can be

written as

Pe(γs,d, γr,d) =(Pe1Pe2 + Pe3Pe4 + Pe7)(1 − ε)
+ (Pe1Pe3 + Pe2Pe4 + Pe8)ε,

(20)

where

Pe1(γs,d) =1 − e−2γs,d

2

∞∑
k=0

k∑
n=0

2k−nγk
s,d

k!(k − n)!

× Γ(k + 1 − n, T1),

(21)

Pe2(γr,d) =
e−γr,d−T1

2
, (22)

Pe3(γr,d) =
e−2γr,d

2

∞∑
k=0

k∑
n=0

2k−nγk
r,d

k!(k − n)!

× Γ(k + 1 − n, T1),

(23)

Pe4(γs,d) =
e−γs,d−T1

2
, (24)

Pe7(γs,d, γr,d) =
1
2
e−γr,d − 1

2
e−γr,d−T1

− e−2γs,d−γr,d

4

∞∑
k=0

k∑
n=0

k−n∑
m=0

2k−n−m−1γk
s,d

k!m!

× γ(m + 1, 2T1) +
e−γs,d−2γr,d

8

×
∞∑

k=0

k∑
n=0

γk
r,d

k!(k − n)!
γ(k − n + 1, 2T1),

(25)

Pe8(γs,d, γr,d) =
e−2γr,d

2

∞∑
k=0

k∑
n=0

2k−nγk
r,d

k!(k − n)!

× γ(k − n + 1, T1) − e−2γs,d−2γr,d

8

×
∞∑

k=0

∞∑
i=0

k∑
n=0

i∑
j=0

i−j∑
m=0

γk
r,dγ

i
s,d

k!(k − n)!i!m!2j+m−i

× γ(k − n + m + 1, 2T1)

+
1
8
e−γs,d−γr,d(1 − e−2T1),

(26)

and the upper and lower incomplete Gamma function

are defined as Γ(a, x) =
∫ ∞

x
e−tta−1dt and γ(a, x) =∫ x

0
e−tta−1dt, respectively. Notice that the conditional BER

only depends on the instantaneous SNRs γr,d and γs,d, and

the error probability ε at R.

The average BER for DDF is obtained by averaging (20)

using the distributions (6) of γr,d and γs,d:

P̄e =
∫ ∞

0

∫ ∞

0

Pe(γ1, γ2)pγs,d
(γ1)pγr,d

(γ2)dγ1dγ2. (27)

A close examination of (21)–(26) reveals that the two-

dimensional integration in (27) is separable. Using [9,

Eqn. (3.351.3)], we arrive at the following closed form ex-

pression of the average BER for DDF:

P̄e =(P̄e1P̄e2 + P̄e3P̄e4 + P̄e7)(1 − ε)
+ (P̄e1P̄e3 + P̄e2P̄e4 + P̄e8)ε,

(28)

where

P̄e1 =1 − 1
2Γ(ms,d)

(
ms,d

2γ̄s,d + ms,d

)ms,d ∞∑
k=0

k∑
n=0

2k−n(k + ms,d − 1)!γ̄k
s,dΓ(k + 1 − n, T1)

k!(k − n)!(2γ̄s,d + ms,d)k
,

(29)

P̄e2 =
(mr,d − 1)!
2Γ(mr,d)

(
mr,d

γ̄r,d + mr,d

)mr,d

e−T1 , (30)

P̄e3 =
1

2Γ(mr,d)

(
mr,d

2γ̄r,d + mr,d

)mr,d ∞∑
k=0

k∑
n=0

2k−n(k + mr,d − 1)!γ̄k
r,dΓ(k + 1 − n, T1)

k!(k − n)!(2γ̄r,d + mr,d)k
,

(31)

P̄e4 =
(ms,d − 1)!
2Γ(ms,d)

(
ms,d

γ̄s,d + ms,d

)ms,d

e−T1 , (32)

P̄e7 =
(mr,d − 1)!
2Γ(mr,d)

(
mr,d

γ̄r,d + mr,d

)mr,d

(1 − e−T1)

− (mr,d − 1)!
8Γ(ms,d)Γ(mr,d)

(
ms,d

2γ̄s,d + ms,d

)ms,d

×
(

mr,d

γ̄r,d + mr,d

)mr,d ∞∑
k=0

k∑
n=0

k−n∑
m=0

2k−n−m(k + ms,d − 1)!γ̄k
s,dγ(m + 1, 2T1)

k!m!(2γ̄s,d + ms,d)k

+
(ms,d − 1)!

8Γ(ms,d)Γ(mr,d)

(
ms,d

γ̄s,d + ms,d

)ms,d

×
(

mr,d

2γ̄r,d + mr,d

)mr,d ∞∑
k=0

k∑
n=0

(k + mr,d − 1)!γ̄k
r,dγ(k − n + 1, 2T1)

k!(k − n)!(2γ̄r,d + mr,d)k
,

(33)

P̄e8 =
1

2Γ(mr,d)

(
mr,d

2γ̄r,d + mr,d

)mr,d ∞∑
k=0

k∑
n=0

2k−n(k + mr,d − 1)!γ̄k
r,dγ(k + 1 − n, T1)

k!(k − n)!(2γ̄r,d + mr,d)k

− 1
8Γ(ms,d)Γ(mr,d)

(
ms,d

2γ̄s,d + ms,d

)ms,d

×
(

mr,d

2γ̄r,d + mr,d

)mr,d ∞∑
k=0

∞∑
i=0

k∑
n=0

i∑
j=0

i−j∑
m=0

(k + mr,d − 1)!(i + ms,d − 1)!γ̄k
r,d(2γ̄s,d)i

(2γ̄r,d + mr,d)k(2γ̄s,d + ms,d)i

(34)
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× γ(k + m + 1 − n, 2T1)
k!(k − n)!i!m!2j+m

+
(ms,d − 1)!
8Γ(ms,d)

× (mr,d − 1)!
Γ(mr,d)

(
ms,d

γ̄s,d + ms,d

)ms,d

×
(

mr,d

γ̄r,d + mr,d

)mr,d

(1 − e−2T1).

B. Alternative Average BER of PL Detector

Note that t0 in (16) is a quadratic form of Gaussian variates

xd(n−1) and xd(n). At the high SNR regime, we may ignore

the cross term of the Gaussian noise components of xd(n−1)
and xd(n) (see [6, p. 273]) for details) and approximate the

conditional distribution of t0 as N (2γs,dd(n), 4γs,d), where

N (µ, σ2) denotes a real Gaussian random variable with mean

µ and variance σ2. Likewise, at high SNR, we can approximate

the distribution of t1 as a Gaussian mixture:

pt1(y) ≈(1 − ε)Φ(y; 2γr,dd(n), 4γr,d)
+ εΦ(y;−2γr,dd(n), 4γr,d),

(35)

where Φ(q;µ, σ2) denotes the PDF of a real Gaussian random

variable with mean µ and variance σ2. Based on the above ap-

proximations and error events defined in (19), the conditional

BER can be expressed as

Pe(γs,d, γr,d) ≈ Q

(
2γs,d − T1

2√γs,d

)

×
[
(1 − ε)Q

(
2γr,d + T1

2√γr,d

)

+εQ

(
T1 − 2γr,d

2√γr,d

)]
+ Q

(
T1 + 2γs,d

2√γs,d

)

×
[
(1 − ε)Q

(
T1 − 2γr,d

2√γr,d

)
+ εQ

(
T1 + 2γr,d

2√γr,d

)]

+
∫ T1

−T1

dypt1(y)Q
(

2γs,d + y

2√γs,d

)
,

(36)

where Q(·) denotes the standard Gaussian Q function. Averag-

ing the conditional BER using the distribution of γs,d and γr,d

yields the approximate average BER, which has the same form

of (27). This alternative BER expression requires numerical

integration.

V. NUMERICAL RESULTS AND REMARKS

We consider a symmetric scenario where the average SNRs

of all hops are identical: γ̄s,d = γ̄s,r = γ̄r,d. We compare our

cooperative system to a conventional non-cooperative system

that involves direct transmission from S to D with differential

BPSK (DBPSK). For fair comparison, we set γ̄s,d = γ̄s,r =
γ̄r,d = 0.5Eb/N0, where Eb denotes the energy per bit, so that

the sum of the transmitted energy from both S and R for the

cooperative system is identical to that of the non-cooperative

system. Fig. 2 shows the exact and the alternative average

BERs for the PL detector, computer simulation results for the

PL and the ML detector are also plotted in Fig. 2, along with

the average BER of the non-cooperative differential BPSK for

Rayleigh fading (mi,j = 1). It is seen that our proposed DDF
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Fig. 2. BER performance of DDF in Nakagami-m fading channels(mi,j = 1
and mi,j = 2).

scheme achieves diversity gain, which depends on the fading

parameter mi,j . As mi,j becomes larger, the diversity gain

increases. We observe that our analytical BERs (both exact

and alternative) for the PL detector are in agreement with

simulation results, and the performance of the PL detector

is very close to that of the ML detector. Thus, we are in favor

of the PL detector, and may use the analytical BER of the PL

detector to assess the performance of the ML detector.
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