
COMBINING REED-SOLOMON CODES AND OFDM
FOR IMPULSE NOISE MITIGATION: RS-OFDM

Geert Van Meerbergen �, Marc Moonen �

� E.E. Dept., ESAT/SISTA, K.U.Leuven
Kasteelpark Arenberg 10, 3001 Leuven, Belgium

gvanmeer,moonen@esat.kuleuven.be

Hugo De Man �†

† IMEC
Kapeldreef 75, 3001 Leuven, Belgium

deman@imec.be

ABSTRACT
In this paper, a joint solution to the design problem of a good error-
correcting code for an OFDM scheme with a low Peak to Average
Power Ratio (PAPR) in the case of impulse noise is presented. The
PAPR problem is tackled by decomposing the circulant channel ma-
trix into parallel channels by using DFT matrices in a Galois field
of odd characteristic, rather than in a complex field. The modulo
operation inherent to this field then limits the power of the mod-
ulated signal. More importantly, it is explained how this OFDM
scheme can be seamlessly merged with a Reed-Solomon (RS) code,
which due to its maximal Hamming distance is the preferred code
for impulse noise cancellation. The overall scheme, referred to as
RS-OFDM, shows an error correcting code that is matched to the
OFDM-modulator. It is shown that the optimal Hamming distance
of the RS code is preserved not only by the OFDM modulator, but
also by the channel.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a well known
technique in wireline as well as in wireless communications. OFDM
(DMT) is adopted in many standards like DAB, DVB, Wireless LAN
and xDSL. It has several advantages over single carrier systems, e.g.
it is resistant against dispersion in the transmission channels, and
efficient hardware implementations exist for the equalizer and the
DFT. Moreover, coded OFDM allows the exploitation of frequency
diversity and it provides a greater immunity to impulse noise and
fast fades. One of the major drawbacks of OFDM is its high Peak
to Average Power Ratio (PAPR). This limits the transmission range
and requires that the transmit amplifiers have a large input power
back-off. In many low-cost operations, the disadvantages outweigh
all the benefits of OFDM [1].

The idea of jointly solving the PAPR and the error correcting
code (ECC) design problem is first adressed using block codes in [2].
Similarly, Davis et al. [3] obtain a class of low PAPR codes with a
large minimum distance based on cosets of Reed-Muller codes. In
this paper, the PAPR problem is tackled in yet another way; The
usually complex field DFT operation is replaced by a DFT in a finite
field. To be compatible with the channel, a Galois field of odd char-
acteristic is chosen. The modulo operation inherent to this field then
yields a low PAPR. More importantly, the finite field DFT operation
can be seen as part of a Reed-Solomon (RS) code. Therefore, we rely
on a critically subsampled filterbank representation for RS codes [4].
The OFDM modulator and ECC become effectively merged to yield
one large RS code.
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It is also important to mention the relationship between OFDM
and real-valued BCH codes as described in [5, 6]. Our methods dif-
fer from [6] in many respects: In our method, the DFT size is typi-
cally much smaller than the block length of the code. This leads to a
scheme separating the coding aspect (addition of redundancy) from
the modulator, which resembles a normal OFDM modulator. As a
second difference, in our approach, all operations are performed in
a Galois field of odd characteristic, i.e. GF (p) with p a prime num-
ber. To be compliant with the channel operating in the complex field,
the isomorphism between GF (p) and the integers modulo p will be
called upon.

The paper is organized as follows: In section 2, the basic OFDM
principles are briefly recalled, and it is explained how (when) a chan-
nel can be diagonalized in the Galois field. In the next section, the
filterbank structure of an RS code is presented. In section 4, it is ex-
plained how the filterbank merges with the OFDM modulator. The
performance gain is illustrated using simulations. In this section, it
is also briefly discussed how the receiver can be simplified.

2. OFDM SYSTEM MODEL
The core of the OFDM architecture is a block based system, process-
ing data in a block-wise fashion. A data block x is modulated using
the inverse M -point discrete Fourier transform (IDFT), obtaining y,
and is prepended with a cyclic prefix of length L. The multi-path
propagation channel is modeled as a finite impulse response filter
h(z−1) = h0 + h1z

−1 + h2z
−2 + . . . with noise added. Assuming

perfect symbol and block synchronization and that the channel order
is not larger than L, inter block interference is avoided such that a ỹ

is received which is specified as follows:

y = F
−1
M x (1)

ỹ =
ˆ
OM,L | IM

˜
H

»
IL | 0L,M−L

IM

–
| {z }

H̃

y + n (2)

x̃ = FM ỹ (3)

In these equations, FM represents an M × M DFT matrix with
[FM ]i,j = W i,j

M and WM is an M -th root of unity: WM = e2πj/M .
The channel matrix H is defined as

H =

2
666666666664
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. . .
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. . .
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. . .
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. . .
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. . .
hL . . . h1 h0
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(4)
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The cyclic prefix (CP) insertion and removal transforms the channel
matrix H into a circulant matrix H̃ which is diagonalized by FM

and F−1
M , i.e.

Ẽ = FMH̃F
−1
M (5)

Hence, an estimate of x can be obtained as

x̂ = Ẽ
−1

x̃ = x + Ẽ
−1

FMn

Considering the transmission of multiple blocks, the baseband
discrete-time model of an OFDM system is seen as a transmulti-
plexer structure in Figure 1. This representation makes it easier to
make the link with the filterbanks further on. Moreover, the polyphase
decomposition allows us to properly describe the block based sys-
tem. Now, an input sequence x(z−1) = x0 + x1z

−1 + x2z
−2 + . . .

is written as a block of M samples using its M -fold polyphase com-
ponents:

x
[M]
l (z−1) =

∞X
k=0

xl+kMz−k (6)

These polyphase components can be stacked into a vector

x
[M](z−1) =

h
x

[M]
0 (z−1) x

[M]
1 (z−1) . . . x

[M]
M−1(z

−1)
iT

(7)
Note that in the case of a single transmitted block, all polyphase
components are scalars again and x[M] = x = [x0x1 . . . xM−1]

T ,
just as before. Equations 1- 3 can now be rewritten using their
polyphase components by simply replacing, e.g., x by x[M](z−1).

To satisfy y[M] = F−1
M x[M] (Equation 1) and ˜x[M] = FM

˜y[M]

(Equation 3), the synthesis (analysis) filters need to be defined as

cm(z−1) =

M−1X
m′=0

W−mm′

M z−m′

(8)

am(z−1) =

M−1X
m′=0

W mm′

M z−m′

. (9)

Assuming that the channel is a Galois field channel, it can be simi-
larly diagonalized if the M-th root of unity (defining the DFT-matrix)
is re-defined accordingly:

WM = α(p−1)/M (10)

In this equation, α is a primitive (p − 1)-th root of unity. Also note
that the M -th root of unity (and thus the DFT matrix) only exists if
M and p − 1 are not coprime.

The channel however is always defined in the complex field.
Nevertheless, by choosing a Galois field of odd characteristic GF (p),
and by applying a modulo operation at the receiver, the diagonaliza-
tion of a channel in the complex field can indeed be obtained with
finite field DFT matrices. This is due the well known fact that there
exists an isomorphism between the elements of GF (p) and the inte-
gers modulo p. Therefore, an addition (multiplication) performed by
the channel (in the complex field) can be seen as an addition (multi-
plication) in GF (p) if a modulo is taken at the output of the channel.
In the rest of the section, this is explained in more detail.

The Galois field GF (p) is uniqely defined by its primitive poly-
nomial s(x) = s0 + x. The primitive p − 1-st root of unity α is a
root of this primitive polynomial:

α = −s0 mod p (11)

This equation defines the isomorphism between the elements of the
Galois field and the integers modulo p:

a = αi → a = (−s0)
i mod p (12)

From a notational point of view, note that the Galois field repre-
sentation of a (matrix) variable a is denoted by a. To limit the
power of the signal, it is preferred to bound the integers between
−(p− 1)/2 . . . (p− 1)/2 instead of 0 . . . p− 1. Hence, the modulo
operation x mod p is replaced by (x)p:

(x)p = round(x − p�(x + p/2)/p�). (13)

Assume the channel coefficients hi can be appropriately quan-
tized to integers between −(p − 1)/2 . . . (p − 1)/2 which incurs
only a small quantization error if p is chosen large enough1. These
coefficients define the matrix H̃ which can be diagonalized in the
Galois field:

Ẽ = FMH̃F
−1
M (14)

This decomposition can then be used to make an alternative OFDM
scheme:

y
[M] = F

−1
M x

[M] (15)

ỹ
[M] =

“
H̃y

[M] + n
”

p
(16)

x̃
[M] = FM ỹ

[M] (17)

x̂
[M] = Ẽ

−1
x̃

[M] (18)

In the above equations, all operations are Galois field operations,
except Equation 16 which uses the integer representation y[M] as in-
put to the channel. After taking the modulo-like operation, the result
ỹ[M] is returned to the Galois field for equalization in Equation 18.
The Galois field counterpart of Equation 16 is

ỹ
[M] = H̃y

[M] + n
′ with n

′ = (n)p (19)

Note that the Galois field operations (modulo operations) ensure the
low PAPR of the modulated signal. In addition, note that this modulo
operation has the same function as the modulo operation in a dirty
paper coding scheme by limiting the power of the signal.

Example 1 In this example, GF(13) is chosen (p = 13) with primi-
tive polynomial 11 + x. The primitive p − 1-th root of unity α is a
root of this primitive polynomial:

α = −11 mod 13 = 2 (20)

The isomorphism between the elements of the Galois field and the
integers modulo 13 can now be constructed:

0 1 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

0 1 2 4 −5 3 6 −1 −2 −4 5 −3 −6

Choosing M = 3, the DFT-matrix

F3 =

2
4 1 1 1

1 α4 α8

1 α8 α4

3
5 F3 =

2
664

1 1 1

1 3 −4

1 −4 3

3
775 (21)

can be used to decompose a circulant matrix H̃ as follows:0
BBBBBB@

2
41 1 1

1 3 −4
1 −4 3

3
5

| {z }
F3

2
41 3 2
2 1 3
3 2 1

3
5

| {z }
H̃

2
4−4 −4 −4
−4 3 1
−4 1 3

3
5

| {z }
F

−1
3

1
CCCCCCA

13

=

2
46

−5
2

3
5

| {z }
Ẽ

1Note that an extra scaling does not change the results, e.g. the channel
coefficients can be bounded between -1..1 if an extra scaling (p − 1)/2 is
applied.
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Fig. 1. Transmultiplexer structure of a baseband discrete-time model of an OFDM system.

In Equation 16, it is seen that a modulo operation is performed which
- as we will now show - limits the applicability of this scheme in the
case of AWGN noise. If the noise is larger than 0.5, a symbol er-
ror is always made. If a specific band however has a high SNR,
e.g. if the corresponding coefficient of Ẽ reaches its maximum value
(p−1)/2, one would expect to tolerate noise as large as (p−1)/4. In
fact, in a classical OFDM scheme, this is obtained by the equalizer
which in the complex field would down scale the noise by a factor of
(p− 1)/2. In the Galois field however, the noise will never be down
scaled, thereby not exploiting the frequency bands with a high SNR.
In the case of impulse noise however, the situation is completely
different and the modulo in Equation 16 can be taken without com-
promising performance. To tackle impulse noise, error correcting
coding must be applied. To minimize the word error rate by a (hard)
ML decoder, the coded performance is determined by the Hamming
distance of the code. The rest of this paper chooses RS codes given
their Maximum Distance Separable (MDS) character. It is seen how
these codes can seamlessly be integrated with the OFDM scheme
presented. Therefore, we first explore the filterbank character of RS
codes.

3. FILTERBANKS AND REED-SOLOMON CODES
Reed-Solomon codes are block-based error correcting codes with a
wide range of applications in digital communications and storage.
RS codes are non-binary codes; that is, we describe them in terms of
symbols (in GF (pd)) rather than bits: A block of κ data word sym-
bols is encoded into a codeword of length ν with ν = pd − 1. Each
polynomial associated with a codeword has a number of consecutive
powers of αi, i = 0..ν − κ + 1 among its roots. In [4], the fol-
lowing theorem is proven, which states that a critically subsampled
filterbank representation exists for each RS.

Theorem 1 Let R(ν, κ, ν − κ + 1) be a Reed-Solomon code over
GF (pd) of length ν = pd − 1 and dimension κ. Consider an STFT-
based critically subsampled filterbank with M bands (M |ν), sub-
sampled by M as shown in Figure 2. The synthesis bank is defined
the same way as in Equation 8. This filterbank will implement the RS
code R(ν, κ, ν−κ+1) if a root αi of R(ν, κ, ν−κ+1) is assigned
to subband m if and only if i mod M = m. Stated otherwise,

dm(αi) = 0 ⇔ ∃j ∈ Z|i = Mj + m (22)

If a dataword u(z−1) (length κ) is fed into the filterbank, it is (equally)
split by the analysis bank into its M polyphase components x[M]

m (z−1).
If κ and M are coprime, then the analysis bank ensures that the
bands with one root less receive one input sample more (See the ex-
ample). Next, the subband filters dm(z−1) add redundancy to each
x[M]

m (z−1), yielding exactly ν/M subband variables x[M]
m (z−1). Fi-

nally, the subband samples x[M]
m (z−1) are combined in the DFT-

synthesis bank such that the output of the filterbank y(z−1) is a valid
RS codeword. From a matrix point of view, the filterbank operations
can be written as

ỹ
[M] = F

−1
M diag

“
d(z−M )

”
u

[M] (23)

1

z−(M−3)

z−(M−2)

z−(M−1)

↓ M

↓ M

↓ M

↓ M
u

[M ]
0 (z−1)

u
[M ]
1 (z−1)

u
[M ]
2 (z−1)

u
[M ]
M−1(z

−1)

d0(z
−1)

d1(z
−1)

d2(z
−1)

dM−1(z
−1)

c0(z
−1)

c1(z
−1)

c2(z
−1)

cM−1(z
−1)

↑ M

↑ M

↑ M

↑ M

u(z−1)
y(z−1)

x
[M ]
0 (z−1)

x
[M ]
1 (z−1)

x
[M ]
2 (z−1)

x
[M ]
M−1(z

−1)

Fig. 2. Critically subsampled filterbank with M bands. According
to theorem 1, each RS code (as long as its block length is not prime)
can be represented as such a filterbank. Note the correspondence
with the synthesis bank in Figure 1.
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Fig. 3. Critically subsampled filterbank with 3 bands implementing
R(12, 5, 8) (example 2).

Example 2 Since Galois fields of prime characteristic are of special
interest to us (d = 1), let us construct a filterbank which implements
R(12, 5, 8) in GF(13). Its roots are chosen {αk}k=2...8. Hence,
each codeword is a multiple of the generator polynomial

g(z−1) =

8Y
k=2

(z−1 − αk) (24)

According to the theorem, these roots α2, α3, α4, α5, α6, α7, α8 are
distributed among the polynomials dm(z−1) as follows:

α3, α6 ⇐ d0(z
−1) = α9 + α5z−1 + z−2

α4, α7 ⇐ d1(z
−1) = α11 + α6z−1 + z−2

α2, α5, α8 ⇐ d2(z
−1) = α10 + α11z−1 + z−2 + α1z−3

The filterbank so obtained is shown in Figure 3. In this case, each
band receives 2 polyphase samples in u[3]

m (z−1), except the last
band, which receives one. Next, the subband filters expand each
u[3]

m (z−1) to 4 subband samples x[3]
m (z−1) per band. This is pos-

sible since the missing x sample in the last band is compensated
by a longer subband filter d2(z

−1). Finally, the subband samples
x[3]

m (z−1) are combined in the DFT-synthesis bank such that the out-
put of the filterbank y(z−1) is a valid RS codeword.

4. COMBINING RS AND OFDM:RS-OFDM
In the case of impulse noise, RS codes are normally applied around
the core OFDM system as shown in Figure 1. Typically, the opti-
mality of the overall system (combination ECC and modulator) is
never questioned. However, with the filterbank representation of RS
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Fig. 4. Comparison of a concatenated scheme of R(12, 3, 10) fol-
lowed by an OFDM modulator and the RS-OFDM scheme based
on R(12, 3, 10). The RS-OFDM scheme has an overall Hamming
distance of 10 compared to 4 for the concatenated scheme.

codes in mind, the DFT synthesis bank of an OFDM modulator (in
the Galois field) is seen to be part of the RS code. Therefore, it is
proposed to merge the two schemes, leading to a new scheme re-
ferred to as RS-OFDM. Mathematically, Equations 15 and 23 can be
merged leading to

ỹ
[M] = H̃F

−1
M diag

“
d(z−M )

”
u

[M] + n
′ (25)

In RS-OFDM using R(ν, κ, ν − κ + 1), redundancy is added
to the polyphase components of a dataword u(z−1) before it is send
into the DFT synthesis bank. This redundancy is added in such a
way that the output of the synthesis bank is a RS codeword. Instead
of concatenating an RS code with an OFDM modulator, the overall
Hamming distance of the RS code is preserved doing RS-OFDM.
This is further illustrated in the following example comparing a nor-
mal coded OFDM system vs. RS-OFDM.

Example 3 In this example, a comparison is made between a typ-
ical concatenated scheme of a non-systematic R(12, 3, 10) (using
g(z−1) similar to Equation 24) followed by an OFDM modulator
and the RS-OFDM scheme based on the sameR(12, 3, 10). Both are
using the same hard-ML decoder, using 13-PAM modulation. The
RS-OFDM scheme has an overall Hamming distance of 10 compared
to 4 for the concatenated scheme, resulting in a 2dB gain (Figure 4).
This performance loss of the concatenated scheme is explained by
the cancellation of the DFT inherent to the RS code with the DFT in
the OFDM modulator. Also if the latter uses a DFT in the complex
field, the Hamming distance is still 4.

In the previous example, it is explained that the Hamming dis-
tance of the RS code is not destroyed by the OFDM modulator. In
this paragraph, we will see that also the channel can not reduce the
Hamming distance of the code. Recalling Equation 25

ỹ
[M] = H̃F

−1
M diag

“
d(z−M )

”
u

[M] + n
′ (26)

= F
−1
M Ẽdiag

“
d(z−M )

”
u

[M] + n
′ (27)

= F
−1
M diag

“
d(z−M )

”
Ẽu

[M]| {z }
ũ[M]

+n
′ (28)

The last equation shows that the same ỹ[M] can be obtained by
encoding a different dataword ũ[M]. In other words, the channel
output is also a codeword (up to the noise). This means that at the
receiver, one can first e.g. use Berlekamp-Massey’s algorithm to find
the ML-solution for ũ[M], and then perform an equalization on the
data according to

Ẽu
[M] = ũ

[M] (29)

In this case, equalization and decoding are separated without com-
promising optimality (no joined decoding-equalization necessary)
and can even be swapped.

As a final remark, note the low PAPR of the p-PAM constellation
that is transmitted. It is also worth mentioning that the techniques
can be extended to QAM constellations. In this case, GF (p2) will
be used. However, a detailed explanation is beyond the scope of this
paper.

5. CONCLUSION
In this paper, an OFDM scheme is presented where the circulant
channel matrix is decomposed using DFT matrices in a Galois field.
In order to be compatible with the finite field operations, the channel
is assumed to be quantized and a modulo operation must be added
at the receiver. In the case of impulse noise, this modulo operation
does not compromise system performance. Using a filterbank rep-
resentation of an RS code, it is explained how this OFDM scheme
can be seamlessly merged with a Reed-Solomon code, designed for
impulse noise cancellation. The overall scheme shows an RS code
which matches the OFDM-modulator. Simulations show the advan-
tage of the jointly designed RS-OFDM scheme. It is shown that the
optimal Hamming distance of the RS code is preserved not only by
the OFDM modulator, but also by the channel. In addition to the
performance gain, an RS-OFDM scheme shows a reduced PAPR.
Moreover the complexity can be reduced since the whole RS-OFDM
system can be seen as one large RS code, such that low complexity
RS decoders can be applied in practice.
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