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ABSTRACT

We derive the output SINR of a multi-stage CDMA receiver based

on the Krylov-subspace spanned by the covariance matrix of the

received signal, under the practical assumption of a finite number

of samples available at the receiver. The evaluation of the SINR is

addressed as an approximation problem in the asymptotic regime

defined when both the sample-size and the observation dimension

grow together without bound at the same rate. Limiting SINR val-

ues in this double-limit context are then more representative of the

reality because, as it happens in realistic scenarios, both quantities

are considered to be of the same order of magnitude. Our results

are based on the asymptotic spectrum of the powers of certain ran-

dom matrix models, which can be conviniently studied using the

combinatorial approach to the theory of free probability.

1. INTRODUCTION

Many current mobile radio systems are supported on air-interfaces

based on the code-division multiple access (CDMA) scheme, typ-

ically in its direct-sequence implementation. In the last two

decades, a huge amount of publications has been dedicated to the

theory of multiuser detection dealing with the reception of signals

over these channels. In particular, much attention has been given

to the linear minimum mean-square-error (MMSE) and decorre-

lator receivers, as practical alternatives to the highly-complex op-

timal (finite-alphabet-constrained) maximum likelihood (ML) de-

tector. However, even though they have been proved to perform

considerably more efficiently than the conventional single-user

matched-filter (MF) receiver, their use tends to be avoided in re-

alistic scenarios. First, the complexity associated with these detec-

tion schemes is still prohibitive in situations with a large number

of users. On the other hand, the solution following the multiuser

detection approach is based on the knowledge of the spreading

sequence of all users as well as information about their channels

and the background noise level. In some scenarios, like for exam-

ple in the forward link, it is unrealistic and certainly impractical

to consider tracking all this amount of information. In this situa-

tions, the detection task is better approached from a point of view

of multiple access interference (MAI) suppression [1, 2]. The lin-

ear interference suppression filter minimizing the MSE is equiva-

lent to the solution maximizing the output signal-to-interference-

plus-noise-ratio (SINR), which in the literature is often regarded as
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the minimum-variance distorsionless-response receiver (MVDR).

This receiver is implemented by simply inverting the covariance

matrix of the received signal. In practice, the sample matrix inver-

sion (SMI) algorithm relying on the sample covariance matrix is

used.

In the case of MAI filtering operating in a high-dimensional

code-space (e.g. long spreading codes), the weight vector dimen-

sionality may be too large for the receiver to be effectively esti-

mated. Apart from the computational complexity issue (mainly

due to the inversion of a large covariance matrix), estimating the

covariance matrix of high-dimensional signals would require a

very large number of samples, which cannot be usually afforded

due to the time-variability of the environment. To overcome this

problem, reduced-rank filtering methods have been proposed that

reduce the number of filter coefficients to be effectively estimated.

Thus, under a finite sample-support situation, reduced-rank filters

have better convergence performance than the full-rank solution.

The issue of reduced-rank filter design for small-sample-

support adaptation was first recognized and discussed in [3], where

the authors suggested the conditional optimization (one-by-one)

of the reduced-rank filter taps for superior small-sample-support

performance. In this paper, we take a first step to the design of

interference suppresion schemes for CDMA systems by analyzing

the large-system output SINR of a generic reduced-rank LMMSE

receiver operating in a finite sample-size situation.

2. SIGNALMODEL AND REDUCED-RANK LINEAR

CDMA INTERFERENCE SUPPRESION

Consider a DS-CDMA system with users and processing gain

. Let us define the signal model applying to the samples at the

output of the receiver matched filter at instant as

r ( ) = SAb ( )+n ( ) = 1s1 1 ( )+A 1S 1b 1 ( )+n ( ) ,
(1)

where S = [s1 | S 1] C
× is a spreading matrix with its

columns being the signature sequence of the different users,

b ( ) =
h
1 ( ) | b 1 ( )

i
C is a vector whose entries

correspond to the transmitted symbol of each user, and n ( )mod-
els the background noise at chip-sampling-rate. Different receive

amplitudes are taken into consideration through the diagonal ma-

trixA, which models the atennuation effect due to the fading chan-

nel. In the sequel and without loss of generality, the user 1 is re-
garded as the desired user and 1 = | 1|

2
is its received power.

We focus here on reduced-rank methods that transform the

received signal into a vector lying on a lower dimensional space
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without requiring eigendecomposition or matrix inversion. Specif-

ically, let S C
× be a matrix whose columns form a basis

for a -dimensional subspace, where . The transformed

lower-dimensional received signal is then

r̃ ( )= S r ( ) . (2)

The objective is now to obtain a filter w̃ that minimizes the

reduced-rank MSE, i.e.

M=E

½¯̄̄
1 ( ) w̃ r̃ ( )

¯̄̄
2
¾
. (3)

The solution is given by

w̃ = R̃
1
s̃1 =

³
S RS

´ 1

S s1, (4)

where R̃ = S RS and s̃1 = S s1. Finally, the reduced-rank

-dimensional approximation of the -tap linear MMSE filter is

w = S
³
S RS

´ 1

S s1. (5)

In the past years, a number of reduced-rank methods implement-

ing the filter w have been proposed in the literature [4, 5]. A

slightly different approach to the reduced-rank filtering problem

was also addressed in [6], where the size of the filter-basis is al-

lowed to grow to infinity if non-orthogonal vectors are considered.

They all allow for a reduction of the computational complexity

by approximating the optimal estimate in a number of stages or

iterations . It has been shown that reduced-rank lin-

ear filters based on the previously introduced transformation can

achieve near-optimum (LMMSE) performance for relatively small

values of , independently of the scaling of and , which are

assumed to be of the same order of magnitude. Furthermore, the

receiver can be regarded as an approximation of the Wiener filter

obtained by forcing the filter to lie on the -dimensional Krylov

subspace generated by the covariance matrix of the received signal

and the matched filter of the desired user [7]. Hence, the linear

interference suppresion filter can be obtained as

w =

1X
=0

R s1. (6)

If the true covariance matrix is available, it results from the

Cayley-Hamilton theorem [8] that the optimal solution will only

be achieved when the weighted sum of matrix powers perfectly

matches the inverse of the covariance matrix (i.e. = ),

or, equivalently, when the reduced-rank approximation approaches

the full-rank (optimal) Wiener solution. If an estimate of the true

covariance matrix is used in the computations, as it usually hap-

pens to be the case in practical implementations, the optimality

statement above is no longer true: the optimal filter in the sequence

will generally be found after stages or iterations. In other

words, if a sample covariance matrix is available as an estimate of

the theoretical covariance matrix, one can do better than directly

computing the minimum variance receiver (or individual LMMSE

solution) by just searching for an optimal filter in a -dimensional

( ) space as defined above.

In the following, the output SINR of a reduced-rank linear in-

terference suppression receiver considering a collection of a finite

number of samples is analyzed. For our study, the set of received

signals after chip-matched filtering is modeled according to (1) as

X = 1s1b1 +R
1 2
Y, (7)

where the vector b1 contains the symbols of the target user col-

lected through samples and R is the interference-plus-noise

covariance matrix. Throughout the paper, the following statistical

assumptions regarding the previous signal model are used:

(As1) The entries of the vector b1 are i.i.d. circu-

larly symmetric random variables with zero mean, variance 1 and
bounded forth-order moment, and symbols transmitted by differ-

ent users are mutually independent.

(As2) The matrix Y is an × random matrix whose

entries are modeled as i.i.d. circularly symmetric Gaussian random

variables with zero mean and variance 1 .

Note that, as symbols from different users and samples are

assumed to be statistically independent, the matrix R
1 2
Y can

be considered to model statistically independent samples of the

interference-plus-noise signal contribution. We are now interested

in approximating the output SINR by an equivalent limiting ex-

pression involving only the true covariance matrix. The rationale

behind this is that certain spectral functions of the covariance ma-

trix can be estimated consistently in the double-limit context de-

fined when both the number of observations and the dimension

of the sample are of the same order of magnitude and grow with-

out bound. Since such asymptotic approximations turn out to reli-

ably characterize practical situations, this approach may allow us

to take into account the fact that only a finite collection of samples

should be considered to be available when addressing the design

of practical receiver schemes.

3. ASYMPTOTIC SINR OF MULTI-STAGE RECEIVERS

BASED ON KRYLOV SUBSPACES

Most of the work published over the last years on the asymptotic

weighting ([9] and references herein) and performance analysis

([7] and [10], where the literature and main results in this area are

thoroughly reviewed) of reduced-rank multistage receivers based

on the aforementioned Krylov subspace rely on the statistical

knowledge of the actual structure of the true covariance matrix. In

this section we derive the ultimate performance of a reduced-rank

multistage receiver in terms of its output SINR, as a function of

quantities that are either known or can be properly approximated in

practice (e.g. spectral functions of covariance matrices as regarded

above). The results from our asymptotic analysis are derived under

the assumption that both the sample-size and the observation

dimension increase without bound with a fixed ratio between

them ( ). In this framework, elements of random ma-

trix theory and free probability are employed in the derivation of

the analytical expressions. The rapid convergence associated with

these techniques allows for the results to resemble those obtained

for finite (non-asymptotic) matrix dimensions. Thus, these results

are then more representative of the reality because, as it turns out

to be the case in realistic scenarios, both quantities and are

considered to be of the same order of magnitude In our analysis,

the convergence of the output SINR will be derived in the random

signature framework, i.e.

(As3) The chips in the code sequence vector s1 are assumed
i.i.d. circularly symmetric random variables with zero mean and
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variance 1 . They are also independent of the received noise

and transmitted symbols.

(As4) The matrixR has uniformly bounded spectral radius

for all and an empirical eigenvalue distribution ( ) con-
verging to a limitin (non-random) p.d.f. ( ).

Furthermore, let denote by C the th eigenvalue moment

of a × matrix C wrt. its empirical eigenvalue distribution

function ( ), defined as

C =

Z
( ) = Tr

h
C

i
, (8)

where Tr [·] = 1 trace [·]. For the subsequent analysis, the sam-

ple covariance matrix R̂ will be modeled according to (7) as

R̂ = XX . (9)

The output SINR is now defined in terms of the sample covariance

matrix available at the receiver as

³
R̂

´
=

¯̄
ŵ s1

¯̄2
ŵ R ŵ

=
1

¯̄̄P
1

=0
s1 R̂ s1

¯̄̄
2

P 1

=0

P 1

=0
s1 R̂ R R̂ s1

.

(10)

The following claim gives a recurrence relation that allows us

to iteratively obtain the limiting values above as a function of

the sample interference-plus-noise covariance matrix, modeled as

R̂ = R
1 2
YY R

1 2
.

Proposition 1 Under the previous statistical assumptions and as

both the number of samples and the observation dimension

increase without bound with a fixed ratio between them, the

scalars s1 R̂ s1 and s1 R̂ RR̂ s1 converge with probability 1 as

s1 R̂ s1 ³
X
=0

¯
R̂

(11)

s1 R̂ R R̂ s1 ³
X
=0

X
=0

¯ ¯ Tr
h
R R̂

+
i
+

+

1X
=0

1X
=0

¯ ¯ Tr
h
R R̂

+ +1
i
,

(12)

where ³ | ³ |
1
0 and the asymptotic coefficients

¯ , ¯ are defined as

¯ +1 ³ | 1|
2
X
=0

¯
R̂

+ 1

1X
=0

¯ +1

R̂
(13)

¯ +1 ³ 1

X
=0

¯
R̂

(14)

with ¯0 = 1.

Proof. The proof is based on an iterative expansion of s1 R̂ =

s1

¡
XX

¢
to avoid applying the multinomial formula to the

powers ofXX . See further [11].

Note that in obtaining the asymptotic expression of terms with

index 1, all other terms in (10) involving lower powers are
also found. We shall stress the interest in computing the asymp-

totic output SINR in terms of true covariance matrices to reveal

the effect of dealing with a finite observation-window. The rest of

the paper is dedicated to obtaining the different moments involving

R̂ in Proposition 1 as a function of the spectrum ofR . We next

introduce a result on the asymptotic moments of sample correla-

tion matrices that allows us to compute the asymptotic equivalents

of the moments in (11), (13) and (14).

Proposition 2 (Asymptotic moments of a sample covariance ma-

trix with outer correlations). As both the number of samples

and the observation dimension increase without bound with

between them, the asymptotic th eigenvalue moment

of the sample covariance matrix R̂ can be obtained as

R̂
=

1

+ 1

X
=1

Ã
+ 1

! X
1+···+ =

1 {1 }

1

R
· · ·

R
.

(15)

Proof. The proof is based on the application of the Lagrange in-

version formula to the Stieltjes transform of a sample covariance

matrix of the type of R̂ , which is expressed as a function ofR .

See [11] for a proof.

In order to obtain the asymptotic moments in (12), we rely on

an alternative interpretation of (15), which builds upon the conec-

tion between the theory of lattices of non-crossing partitions (intro-

duced by Kreweras in [12]) and the combinatorial approach to the

theory of free probability developed by Speicher (see e.g. [13]).

Under this framework, a relation is found between the asymptotic

moments of non-commutative random variables (as defined in (8)

when ) and the coefficients of the R-transform in free

probability (i.e. the free cumulants of ( )). In order to prove
our previous result with elements of this theory, it is first helpful

to reformulate the moment calculation problem as

Tr
h
R̂

i
= Tr

h³
R
1 2
YY R

1 2
´ i

= Tr
h³
Y R Y

´ i
,

whereY R Y is identified as a non-commutative random vari-

able, whose asymptotic moments are to be obtained. Then, an

expression equivalent to (15) is obtained by directly invoking the

moment-cumulant formula in [13] and using the fact that, when

dealing with the powers of Y R Y, an explicit computation of

its free cumulants in terms of the limiting eigenvalue moments of

R is possible. We skip further details for the sake of brevity and

refer the reader to [11]. We remark that a similar approach was

also followed in [10, 3.1.6]. The advantage of using this frame-

work is twofold. First, a recursive formula to obtain Y R Y

(and accordingly R
1 2
YY R

1 2
) may be readily found. Fur-

thermore, the previous result can be easily extended to the case of

expressions like

Tr
h
Y C1Y · · ·Y C Y

i
, (16)

where C ( ) = {C1 C } is an arbitrary set of (possibly dif-
ferent) non-free random elements (e.g. polynomials in R ). The

following result gives a recursive formula to obtain (16) for a set

of matricesR ( ) =
©
R R

ª
in terms of the spectrum of

R and the asymptotic moments of R̂ .
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Proposition 3 Under the statistical assumptions considered

above and as , grow without bound with a fixed ratio , the

normalized trace of the matrix Y R Y
¡
Y R Y

¢ 1
con-

verge with probability 1 to

X
=1

+ 1

R

X
1+···+ =

1 {0 1 }

1

Y R Y
· · ·

Y R Y
,

(17)

where
Y R Y

=
R
1 2

YY R
1 2 .

Proof. See further [11]. .

Note that the limiting expression of the moments in (15) and

(12) are obtained using = 1 and = 2, respectively.
Since R R as and go to infinity with the ratio

kept fixed (see e.g. Appendix I in [9]), all asymptotic

expressions derived above in terms of the limiting eigenvalue mo-

ments of the interference-plus-noise covariance matrix R may

be equivalently regarded in terms of the covariance matrix of the

received signalR. This technicality allows us to operate formally,

in the double-limit context at hand, in terms of a covariance matrix

R that, unlike the matrix R , can be estimated from the samples

obtained at the receiver.

4. NUMERICAL VALIDATION

In this section, we validate the theoretical set-up derived in previ-

ous sections for the case of a multistage receiver of rank = 3.
Since only the accuracy of our asymptotic SINR evaluation is here

of actual importance, all coefficients are set to 1 in the numeri-
cal simulations. We considered a scenario with = 30 users that
are received with a power 5 dB above the noise floor in a CDMA

system with a spreading length of = 512 chips. Concerning
the observation-window, a ratio = 0 5 is assumed. It is impor-
tant to note that the case of a sample-size smaller than observation

dimension (i.e. 1) could be analyzed using exactly the same

tools. The output
³
R̂

´
converges almost surely to a lim-

iting value (R ), which is obtained by substituting each
term in the (finite) sums in (10) by its asymptotic approximation.

Note further that, as we pointed out in the previous section, we ac-

cordingly have (R ) (R) in the double-limit
context considered here. In Figure 1, the simulated output SINR

and its limiting value as derived in previous sections are compared.

5. CONCLUSION

We derived an asymptotic approximation of the output SINR of

a reduced-rank multi-stage receiver based on the Krylov-subspace

defined by the covariance matrix and the signature of the desired

user. We approach the problem by first obtaining an asymptotic ex-

pression of the output SINR as a function of information available

at the receiver, regarding the desired user and certain spectral func-

tions of the covariance matrix R. The receiver design task would

consist of finding the rank and coefficients maximizing the output

SINR. The asymptotic evaluation presented here allows us to de-

sign these coefficients by evaluating the asymptotic output SINR

expression upon replacing the functions of the (unknown) true co-

variance matrix by its (available) doubly-consistent estimators.
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Fig. 1. Simulated and asymptotic output SINR.
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