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DIRECT FIR LINEAR EQUALIZATION OF DOUBLY SELECTIVE CHANNELS

ABSTRACT

Design of doubly-selective linear equalizers for single user
frequency-selective time-varying communications channels
is considered using superimposed training and without first
estimating the underlying channel response. Both the
time-varying channel as well as the linear equalizers are
assumed to be described by a complex exponential basis ex-
pansion model (CE-BEM). A periodic (non-random) train-
ing sequence is arithmetically added (superimposed) at a
low power to the information sequence at the transmitter
before modulation and transmission. There is no loss in in-
formation rate. Knowledge of the superimposed training is
exploited to design the FIR linear equalizer. An illustrative
simulation example is presented.

1. INTRODUCTION

Consider a time-varying SIMO (single-input multiple-
output) FIR (finite impulse response) linear channel with
N outputs. Let {s(n)} denote a scalar sequence which is
input to the SIMO time-varying channel with discrete-time
impulse response {h(n;l)} (N-vector channel response at
time n to a unit input at time n — [). The vector channel
may be the result of multiple receive antennas and/or over-
sampling at the receiver. Then the symbol-rate, channel
output vector is given by

L

x(n) :=» h(n;l)s(n - ). (1)

=0

In a complex exponential basis expansion representation it
is assumed that

K/2

h(n;l) = hy(l)e’" (2)

qg=—K/2

where N-column vectors hg(l) are time-invariant. Such
models have been used in f and [2], among others; see
Sec. 2 for details. Eqn. (2) is a basis expansion of h(n;!)
in the time variable n onto complex exponentials with fre-
quencies {wg}. The noisy measurements of x(n) are given
by (’I’L:0717,T—1)

y(n) = x(n) + v(n) 3)

A main objective in communications is to recover s(n)
given noisy {x(n)}. In several approaches this requires
knowledge of the channel impulse response. Recently a su-
perimposed training based approach has been explored to
this end where one takes

s(n) = b(n) + c(n), (4)

where {b(n)} is the information sequence and {c(n)} is a
training (pilot) sequence added (superimposed) at a low
power to the information sequence at the transmitter be-
fore modulation and transmission. There is no loss in
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information rate but some useful power is wasted in su-
perimposed training which could have otherwise been allo-
cated to the information sequence. Periodic superimposed
training for channel estimation via first-order statistics for
SISO systems have been discussed in [4], [7], and (8] for
time-invariant channels, and in [6] for both time-invariant
and time-varying (CE-BEM based) channels. Other works
on time-varying channel estimation and data detection us-
ing superimposed training include [3] where the estimated
channel is used to detect information symbols.

Given the knowledge of the time-varying channel de-
scribed by CE-BEM, design of (serial) time-varying FIR
equalizers has been discussed in [1]. Direct design of time-
invariant FIR equalizers based on superimposed training,
for time-invariant channels, has been investigated in [5]. In
this paper we investigate direct design of time-varying FIR
linear equalizers for doubly selective channels using super-
imposed training and without first estimating the underly-
i[n]g channel response. We exploit the prior results of [1] and
5].

Objectives and Contributions: The main problem
considered here is: how to design an equalizer to estimate

b n)} when one knows only {c(n)} but not (obviously)

and one does not also have (frame) synchronization

w1th {c(n } at the receiver. We will design an equalizer to

estimate {c(n)} with a delay d. We will then show that this

equalizer is a scaled version of the corresponding equalizer
designed to estimate {b(n)} with a delay d.

Notation: Superscripts H, * and T denote the com-
plex conjugate transpose, the complex conjugation and the
transpose operations, respectively. 0(7) is the Kronecker
delta and Iy is the N x N identity matrix.

2. DOUBLY SELECTIVE CHANNEL MODEL

Consider a time-varying channel with continuous-time,
baseband received signal z(t) and transmitted signal s(t)
(with symbol interval Ts sec.) related by impulse response
h(t; T) (response at time ¢ to a unit impulse at time t — 7).
Let 74 denote the (multipath) delay-spread of the channel
and let fq denote the Doppler spread of the channel. If z(t)
is sampled once every T sec. (symbol rate), then by [2] (see
also [1]), for t = nTs+to € [to,to+TTs), the sampled signal
z(n) := x(t)|t=nT,+t, has the representation

(n) = h(n;l)s(n 1) (5)
=0

where
K/2
b= S RO, Li=[m/T),  (6)
qg=—K/2
2
qu%, K = 2[f,TT.]. (7)

The above representation is valid over a duration of T'T’s sec.
(T samples). Eqn. (1) arises if we follow (5) and consider
an SIMO model arising due to multiple antennas at the
receiver.
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3. TIME-VARYING FIR EQUALIZERS

We will restrict ourselves to serial linear equalizers instead
of block linear equalizers, since as shown in [1], the latter
are computationally prohibitive (compared with the for-
mer). We look for a time-varying linear equalizer g(n;l)
(I=0,1,---,Lc) over the same time-block as the received
data with channel model (2). We note that for an arbi-
trary time-varying impulse response g(n;l), the following
is always true

(T-1)/2

g = >

q=—(T-1)/2

gq(l)ejqu7 n:O717”'7T_1' (8)

We would like to use a more parsimonious (but approxi-
mate) representation for g(n;l), denoted by g(n;l), given
by
Q/2
g(n7 l) = Z gQ(l)erqn> n= 0717"'

=-Q/2

7T_17 (9)

where Q < (T'—1). In order to estimate the input sequence
{s(n)} (see (1)), we may seek a linear time-varying FIR
estimator to yield an estimate with equalization delay d

)= g’ (nii)y(n— i), (10)

Existence of a zero-forcing linear equalizer has been dis-
cussed in [1]. Their conclusion is that if N is at least 2,
then with probability one, one has a zero-forcing solution
for sufficiently large L. and Q. For linear MMSE solution,
existence is not an issue, although MMSE equalizer perfor-
mance can be expected to be “good” if zero-forcing equal-
izers exist [1]. In this paper we will seek a least squares
solution g(n;!) to minimize a cost such as

=3 lstn—d) — 50— ). (1)

The main problem considered here is: how to design an
equalizer to estimate {b(n)} when one knows only {c(n)}
but not (obviously) {b(n)} and one does not also have
(frame) synchronization with {c(n)} at the receiver. Here
we will follow the time-invariant results of [5].

4. LINEAR LEAST-SQUARES FIR CE-BEM
EQUALIZERS

We first state the underlying model assumptions.

(H1) The information sequence {b(n)} is zero-mean,
ii.d. (independent and identically distributed), with
E{|b(n)*} = 0.

(H2) The measurement noise {v(n)} is zero-mean
(E{v(n)} = 0), white, independent of {b(n)}, with
E{[v(n+7)]v(m)]"} = 03 Ind(7).

(H3) The superimposed training sequence c¢(n) = ¢(n+mP)
Vm,n is a non-random periodic sequence with period

P
P. Let o2 == (1/P) Y, _, le(n)]*.

(H4) Record length T and period P satisfy TP™' > K.
Moreover, P > L + Le.

4.1. Equalizer for Training Estimation
The periodic training sequence can be written as

P—1
c(n) = Z Cme? ™ (12)

m=0
where o, 1= 2”?7". To design the time-varying linear equal-

izer to estimate a delayed version of the training sequence
cn—d) (0<d< Le):

en—d) = gl (nii)y(n — i) (13)

where we assume that

Q/2 _
ga(nii) = Y gq(i)e . (14)

=—Q/2

Choose g,(4)’s to minimize the time-averaged cost

Jo = lZ\c(nfd)fé(nfd)F (15)
n=0
2
1 —1 L. Q/2
=7 |en—d) =" > & e y(n—i)
n=0 i=0 q=—Q/2

(16)
By taking the derivative and setting it to be zero, we have

T—1
aJ, 1 _;
0: C, - _ e Jwgym n—l
G )~ T Y
L. Q/2
x|dm—d) =Y > Uy (n—i)g,(i)
i=0 ¢=—Q/2

(17)
forii =0,1,---,Leand 1 = —Q/2,1—-Q/2,---,Q/2. This
leads to

Le Q/2 1 T-1
SO Yy iy - )| ) =
i=0 ¢g=—Q/2 n=0

T—-1

1 * —Jwg, . .

fzc (n—d)e 1 "y(n —i1) = Re(qu,ir).  (18)
n=0

4.2. Equalizer for Data Estimation

To design the time-varying linear equalizer to estimate the
information sequence b(n —d) (0 < d < L.),

Le
b(n—d) = gi (nii)y(n—1i) (19)

where we assume that

Q/2 ‘
Ba(nii) = Y Bali)e™ . (20)

=-Q/2

IV - 590



Choose g4(s)’s to minimize

Sl

n=0

b(n—d —I;(n—d)|2. (21)

Mimicking the results for the superimposed training
sequence-based equalization, we have

L. Q/2 T-1
SN | E ey i)y (0 - ) | &)
i=0 ¢g=—Q/2 n=0
T—1
= 23 b de Ty (i) = Ralgrin). (22)
n=0

4.3. When are the two equalizers equal?
Comparing (18) and (22), we see that (ignoring the equal-
izer coefficients) the left-sides of the two are identical

whereas the right-sides are different. We now seek to es-
tablish that for large T, R. (ql,zl) = ﬂRb(ql,u) Vqi,i1,

for some scalar (3, so that gq.(1) = 0gq.(1) V
We have
L T2t
Rc(q17i1) = ? ZC*(TL _ d)efjwan
n=0

L

X {Zh(n—il;l)s(n—il —1) +v(n—i1)}
1=0

K/2 L P-1 P-1

i
= 3 Y Y e tmderiematinty

k=—K/2 =0 m1=0mo=0

K/2 L P-1

ﬂwknh 1)Ao + Z Z Z eIomyd —jwnil
k=—K/2 1=0 mq=0
P-1
xhy(DAL+ Y cn, e il A, (23)
m1=0
where
T—
T Z am1+o¢m27wa+wk)n
A= 7 Z J(—am, *“JQ1+“Jk)”b( — iy — l)
1 T-1
As = T Z e_J(amﬁ'w“)”v(n —41).
n=0
Under the condition TP~! > K (then (am+wy) = (an+ws)
iff m =n and ¢ = k), we have
Ao = 5(m1 — m2)5(q1 — k) (24)
Furthermore we have
E{|Al}
T—1 T— 5
Z Z iy —wqy te)m=n2) o250,y = b
— L T
(25)

Similarly, it follows that

No?

E{lA:]?} = =22

(26)

In the mean-square sense (and thus in probability), we then
have the following two limits

lim A1

T—o00

® 0 and hm A, (27)

Thus for “large” T, we have (after some manipulations)

. . m.s.
hm Rc(ql,u) =
T— o0

K/2 L P-1
Z Z Z |C7n|2 eJOtm(d—n—l)e—kanhk(l)(;(ql — k).
k=—K/2 1=0 m=0

(28)
If the training sequence {c(n)} is periodic white (i.e.

Pt ZT}:OI c(n)c*(n —1) = 626(Imod P)), then

P-1
D lemlP T = 625((d — iy — 1) mod P).  (29)
m=0
This fact then leads to
Jim Re(qr,ir) "
oZeIvaih, ((d—i1)mod P) if 1] < K/2 (30)
0 otherwise

foriy =0,1,---,Le and g1 = —Q/2,1 — Q/2,- -

Q2.
Turning to (22), we have

K/2 L P-1

R, (q1,41) = Z Z cmhk(l)e*jam(i1+l)6*jwki1 As
k=—K/2 1=0 m=0
K/2 L
+ ) h()e R A+ As (31)
k=—K/2 1=0
where
, It
yim g T ()
n=0
L T2t
— = J(wg—wqy)n — i = Db (n —
Ay = T Ze wh(n —i1 —1)b"(n —d)
n=0
L T2
=5 Z e 7Yn"y(n —iy)b*(n — d).
n=0
We can show (as before) that
Thm As "2 0 and hm As "0 (32)

Consider

T—1
6= % D @R b(n — iy — )b (n — d)
n=0
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—036(d — i1 —1)] . (33)

It then follows (after some manipulations) that

1 .
E{|46*} = = [E{b(n)|"} —op] 6(d—i1 —1). (34)
Therefore, we have limr_, o, Ag [ILS. 0, and consequently
T—1
lim Ay "2 2N eI @Rmwa)ng2s g — gy — 1)
T —oo oy
= 030(d — i1 — 1)d(q1 — k). (35)
Hence, for “large” T, we have limr_.oc Ry (g1,11) L5
K/2
> th eIk G25(d — iy — )3(q1 — k). (36)
k=—K/2 1=0
For i1 =0,1,---,Le and g1 = —Q/2,1 — Q/2,---,Q/2 but
lg1| < K/2, we therefore have
Jim Ry (q1,11) LS by (d— iy )e Ten il (37)

If P> L+ L., then (30) equals (37) (within a scale
factor). Therefore, for “large” T, Re(q1,%1) = BRe(q1,%1)

thil with B = ac/ab7 hence gQ( ) ng( )

o L=2, TIR=1, Le=6, Q=4, P=15, T=405, 500 Monte Carlo Runs
10 T T T T

T
-o-N=1,{ =0Hz
—E—N=2,fd=0Hz
—N=3, f,=0Hz
-0 N=1,f,=50Hz
- N=2,1,=50Hz
- N=3, f,=50Hz | |
J-@-N=1,1,=100Hz
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O

-
=

~ e
§=---’=‘m§n.r-‘-\.—.n-i

Bit Error Rate

15
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Figure 1. BER (averaged over 500 runs) for different number of
receive antennas and varying Doppler spreads. Equalizer length
Le=6, Q@ = 4 and P = 15. Each channel tap component follows
Jakes’ model (not CE-BEM). N= # of receive antennas; solid
curves: fg=0 (time-invariant); dot-dashed: f;=50 Hz; dashed:
f4=100 Hz.

4.4. Desired Equalizer Design
We execute the followm% steps:
(i) Pick Le and d (= = in Sec. 5). Pick Q > K, P >
L+ L.
(ii) Solve (18), given data y(n), for gq(7) where 0 <i < L.

and f% <qg< % Then

Q/2 .
> eali)e. (38)

=—Q/2

ga(n;i) =

(iii) The equalized output is then given by

Le
ei(n) = Z gl (n;1)y(n—i) = aic(n—d)+azb(n—d)+o(n)
i=0
(39)
where 9(n) is the equalized noise. Estimate a1 as
R 7TZ n_d)sz c*(n—d)
a1 = > = .
T Zn:O C n- )| UC
(40)
(iv) Define

e2(n) =e1(n) —aic(n —d) = azb(n —d) + v(n). (41)
Then we hard-quantize e2(n) to estimate b(n — d).

5. SIMULATION EXAMPLE

We consider a random frequency-selective Rayleigh fad-
ing channel. We took N = 1, 2 or 3 (receiver anten-
nas), and L = 2 in (1) with h(n;!) mutually independent
for all I and all components, zero-mean complex-Gaussian
with equal variance, following Jakes’ model with specified
Doppler spread for each tap component. We consider a
system with carrier frequency of 2GHz, data rate of 40kB
(kB= kilo-Bauds), therefore, Ts = 25 x 107% sec., and a
varying Doppler spread f4. Additive noise was zero-mean
complex white Gaussian. The SNR refers to the energy per
bit over one-sided noise spectral density with both informa-
tion and superimposed training sequence counting toward
the bit energy. Information sequence was BPSK (binary).
We took the superimposed training sequence period P = 15
n (H3); it is periodically white, as in [4, Eqn. (34)]. The
average transmitted power in ¢(n) was equal to the power in
b(n), leading to a training-to-information power ratio (TIR)
of 1.0 .

The results averaged over 500 Monte Carlo for a record
length of T=405 (=15x27) symbols are shown in Fig. 1 for
various Doppler spreads (0, 50 and 100 Hz).
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