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ABSTRACT

Design of doubly-selective linear equalizers for single user
frequency-selective time-varying communications channels
is considered using superimposed training and without first
estimating the underlying channel response. Both the
time-varying channel as well as the linear equalizers are
assumed to be described by a complex exponential basis ex-
pansion model (CE-BEM). A periodic (non-random) train-
ing sequence is arithmetically added (superimposed) at a
low power to the information sequence at the transmitter
before modulation and transmission. There is no loss in in-
formation rate. Knowledge of the superimposed training is
exploited to design the FIR linear equalizer. An illustrative
simulation example is presented.

1. INTRODUCTION

Consider a time-varying SIMO (single-input multiple-
output) FIR (finite impulse response) linear channel with
N outputs. Let {s(n)} denote a scalar sequence which is
input to the SIMO time-varying channel with discrete-time
impulse response {h(n; l)} (N -vector channel response at
time n to a unit input at time n − l). The vector channel
may be the result of multiple receive antennas and/or over-
sampling at the receiver. Then the symbol-rate, channel
output vector is given by

x(n) :=

L∑
l=0

h(n; l)s(n − l). (1)

In a complex exponential basis expansion representation it
is assumed that

h(n; l) =

K/2∑
q=−K/2

hq(l)e
jωqn (2)

where N -column vectors hq(l) are time-invariant. Such
models have been used in [1] and [2], among others; see
Sec. 2 for details. Eqn. (2) is a basis expansion of h(n; l)
in the time variable n onto complex exponentials with fre-
quencies {ωq}. The noisy measurements of x(n) are given
by (n = 0, 1, · · · , T − 1)

y(n) = x(n) + v(n) (3)

A main objective in communications is to recover s(n)
given noisy {x(n)}. In several approaches this requires
knowledge of the channel impulse response. Recently a su-
perimposed training based approach has been explored to
this end where one takes

s(n) = b(n) + c(n), (4)

where {b(n)} is the information sequence and {c(n)} is a
training (pilot) sequence added (superimposed) at a low
power to the information sequence at the transmitter be-
fore modulation and transmission. There is no loss in
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information rate but some useful power is wasted in su-
perimposed training which could have otherwise been allo-
cated to the information sequence. Periodic superimposed
training for channel estimation via first-order statistics for
SISO systems have been discussed in [4], [7], and [8] for
time-invariant channels, and in [6] for both time-invariant
and time-varying (CE-BEM based) channels. Other works
on time-varying channel estimation and data detection us-
ing superimposed training include [3] where the estimated
channel is used to detect information symbols.

Given the knowledge of the time-varying channel de-
scribed by CE-BEM, design of (serial) time-varying FIR
equalizers has been discussed in [1]. Direct design of time-
invariant FIR equalizers based on superimposed training,
for time-invariant channels, has been investigated in [5]. In
this paper we investigate direct design of time-varying FIR
linear equalizers for doubly selective channels using super-
imposed training and without first estimating the underly-
ing channel response. We exploit the prior results of [1] and
[5].

Objectives and Contributions: The main problem
considered here is: how to design an equalizer to estimate
{b(n)} when one knows only {c(n)} but not (obviously)
{b(n)} and one does not also have (frame) synchronization
with {c(n)} at the receiver. We will design an equalizer to
estimate {c(n)} with a delay d. We will then show that this
equalizer is a scaled version of the corresponding equalizer
designed to estimate {b(n)} with a delay d.

Notation: Superscripts H, ∗ and T denote the com-
plex conjugate transpose, the complex conjugation and the
transpose operations, respectively. δ(τ) is the Kronecker
delta and IN is the N × N identity matrix.

2. DOUBLY SELECTIVE CHANNEL MODEL

Consider a time-varying channel with continuous-time,
baseband received signal x(t) and transmitted signal s(t)
(with symbol interval Ts sec.) related by impulse response
h(t; τ) (response at time t to a unit impulse at time t− τ).
Let τd denote the (multipath) delay-spread of the channel
and let fd denote the Doppler spread of the channel. If x(t)
is sampled once every Ts sec. (symbol rate), then by [2] (see
also [1]), for t = nTs +t0 ∈ [t0, t0+TTs), the sampled signal
x(n) := x(t)|t=nTs+t0 has the representation

x(n) =

L∑
l=0

h(n; l)s(n − l) (5)

where

h(n; l) =

K/2∑
q=−K/2

hq(l)e
jωqn, L := �τd/Ts�, (6)

wq =
2πq

T
, K := 2�fdTTs�. (7)

The above representation is valid over a duration of TTs sec.
(T samples). Eqn. (1) arises if we follow (5) and consider
an SIMO model arising due to multiple antennas at the
receiver.
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3. TIME-VARYING FIR EQUALIZERS

We will restrict ourselves to serial linear equalizers instead
of block linear equalizers, since as shown in [1], the latter
are computationally prohibitive (compared with the for-
mer). We look for a time-varying linear equalizer g(n; l)
(l = 0, 1, · · · , Le) over the same time-block as the received
data with channel model (2). We note that for an arbi-
trary time-varying impulse response g̃(n; l), the following
is always true

g̃(n; l) =

(T−1)/2∑
q=−(T−1)/2

g̃q(l)e
jωqn, n = 0, 1, · · · , T − 1. (8)

We would like to use a more parsimonious (but approxi-
mate) representation for g̃(n; l), denoted by g(n; l), given
by

g(n; l) =

Q/2∑
q=−Q/2

gq(l)e
jωqn, n = 0, 1, · · · , T − 1, (9)

where Q � (T −1). In order to estimate the input sequence
{s(n)} (see (1)), we may seek a linear time-varying FIR
estimator to yield an estimate with equalization delay d

ŝ(n − d) =

Le∑
i=0

gH(n; i)y(n − i). (10)

Existence of a zero-forcing linear equalizer has been dis-
cussed in [1]. Their conclusion is that if N is at least 2,
then with probability one, one has a zero-forcing solution
for sufficiently large Le and Q. For linear MMSE solution,
existence is not an issue, although MMSE equalizer perfor-
mance can be expected to be “good” if zero-forcing equal-
izers exist [1]. In this paper we will seek a least squares
solution g(n; l) to minimize a cost such as

1

T

T−1∑
n=0

|s(n − d) − ŝ(n − d)|2 . (11)

The main problem considered here is: how to design an
equalizer to estimate {b(n)} when one knows only {c(n)}
but not (obviously) {b(n)} and one does not also have
(frame) synchronization with {c(n)} at the receiver. Here
we will follow the time-invariant results of [5].

4. LINEAR LEAST-SQUARES FIR CE-BEM
EQUALIZERS

We first state the underlying model assumptions.

(H1) The information sequence {b(n)} is zero-mean,
i.i.d. (independent and identically distributed), with
E{|b(n)|2} = σ2

b .

(H2) The measurement noise {v(n)} is zero-mean
(E{v(n)} = 0), white, independent of {b(n)}, with
E{[v(n + τ)][v(n)]H} = σ2

vINδ(τ).

(H3) The superimposed training sequence c(n) = c(n+mP )
∀m, n is a non-random periodic sequence with period

P . Let σ2
c := (1/P )

∑P

n=1
|c(n)|2.

(H4) Record length T and period P satisfy TP−1 > K.
Moreover, P > L + Le.

4.1. Equalizer for Training Estimation
The periodic training sequence can be written as

c(n) =

P−1∑
m=0

cmejαmn (12)

where αm := 2πm
P

. To design the time-varying linear equal-
izer to estimate a delayed version of the training sequence
c(n − d) (0 ≤ d ≤ Le):

ĉ(n − d) =

Le∑
i=0

gH
d (n; i)y(n − i) (13)

where we assume that

gd(n; i) =

Q/2∑
q=−Q/2

gq(i)e
jωqn. (14)

Choose gq(i)’s to minimize the time-averaged cost

Jc :=
1

T

T−1∑
n=0

|c(n − d) − ĉ(n − d)|2 (15)

=
1

T

T−1∑
n=0

∣∣∣∣∣∣c(n − d) −
Le∑
i=0

Q/2∑
q=−Q/2

gH
q (i)e−jωqny(n − i)

∣∣∣∣∣∣
2

.

(16)
By taking the derivative and setting it to be zero, we have

0 =
∂Jc

∂g∗
q1(i1)

= − 1

T

T−1∑
n=0

e−jωq1ny(n − i1)

×

⎡
⎣c∗(n − d) −

Le∑
i=0

Q/2∑
q=−Q/2

ejωqnyH(n − i)gq(i)

⎤
⎦
(17)

for i1 = 0, 1, · · · , Le and q1 = −Q/2, 1−Q/2, · · · , Q/2. This
leads to

Le∑
i=0

Q/2∑
q=−Q/2

[
1

T

T−1∑
n=0

ej(ωq−ωq1 )ny(n − i1)y
H(n − i)

]
gq(i) =

1

T

T−1∑
n=0

c∗(n − d)e−jωq1ny(n − i1) =: Rc(q1, i1). (18)

4.2. Equalizer for Data Estimation
To design the time-varying linear equalizer to estimate the
information sequence b(n − d) (0 ≤ d ≤ Le),

b̂(n − d) =

Le∑
i=0

ḡH
d (n; i)y(n − i) (19)

where we assume that

ḡd(n; i) =

Q/2∑
q=−Q/2

ḡq(i)e
jωqn. (20)
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Choose ḡq(s)’s to minimize

Jb :=
1

T

T−1∑
n=0

∣∣b(n − d) − b̂(n − d)
∣∣2 . (21)

Mimicking the results for the superimposed training
sequence-based equalization, we have

Le∑
i=0

Q/2∑
q=−Q/2

[
1

T

T−1∑
n=0

ej(ωq−ωq1 )ny(n − i1)y
H(n − i)

]
ḡq(i)

=
1

T

T−1∑
n=0

b∗(n − d)e−jωq1ny(n − i1) =: Rb(q1, i1). (22)

4.3. When are the two equalizers equal?
Comparing (18) and (22), we see that (ignoring the equal-
izer coefficients) the left-sides of the two are identical
whereas the right-sides are different. We now seek to es-
tablish that for large T , Rc(q1, i1) = βRb(q1, i1) ∀ q1, i1,
for some scalar β, so that gq(i) = βḡq(i) ∀ i.

We have

Rc(q1, i1) =
1

T

T−1∑
n=0

c∗(n − d)e−jωq1n

×
{

L∑
l=0

h(n − i1; l)s(n − i1 − l) + v(n − i1)

}

=

K/2∑
k=−K/2

L∑
l=0

P−1∑
m1=0

P−1∑
m2=0

c∗m1cm2ejαm1de−jαm2 (i1+l)

×e−jωki1hk(l)A0 +

K/2∑
k=−K/2

L∑
l=0

P−1∑
m1=0

c∗m1ejαm1de−jωki1

×hk(l)A1 +

P−1∑
m1=0

c∗m1ejαm1dA2 (23)

where

A0 :=
1

T

T−1∑
n=0

ej(−αm1+αm2−ωq1+ωk)n

A1 :=
1

T

T−1∑
n=0

ej(−αm1−ωq1+ωk)nb(n − i1 − l)

A2 :=
1

T

T−1∑
n=0

e−j(αm1+ωq1 )nv(n − i1).

Under the condition TP−1 > K (then (αm+ωq) = (αn+ωk)
iff m = n and q = k), we have

A0 = δ(m1 − m2)δ(q1 − k). (24)

Furthermore we have

E
{
|A1|2

}
=

1

T 2

T−1∑
n1=0

T−1∑
n2=0

ej(−αm1−ωq1+ωk)(n1−n2)σ2
bδ(n1−n2) =

σ2
b

T
.

(25)

Similarly, it follows that

E
{
‖A2‖2

}
=

Nσ2
v

T
. (26)

In the mean-square sense (and thus in probability), we then
have the following two limits

lim
T→∞

A1
m.s.
= 0 and lim

T→∞
A2

m.s.
= 0. (27)

Thus for “large” T , we have (after some manipulations)

lim
T→∞

Rc(q1, i1)
m.s.
=

=

K/2∑
k=−K/2

L∑
l=0

P−1∑
m=0

|cm|2 ejαm(d−i1−l)e−jωki1hk(l)δ(q1 − k).

(28)
If the training sequence {c(n)} is periodic white (i.e.

P−1
∑P−1

n=0
c(n)c∗(n − l) = σ2

cδ(l mod P )), then

P−1∑
m=0

|cm|2 ejαm(d−i1−l) = σ2
cδ((d − i1 − l)mod P ). (29)

This fact then leads to

lim
T→∞

Rc(q1, i1)
m.s.
=

{
σ2

ce−jωq1 i1hq1((d − i1) mod P ) if |q1| ≤ K/2
0 otherwise

(30)

for i1 = 0, 1, · · · , Le and q1 = −Q/2, 1 − Q/2, · · · , Q/2.
Turning to (22), we have

Rb (q1, i1) =

K/2∑
k=−K/2

L∑
l=0

P−1∑
m=0

cmhk(l)e−jαm(i1+l)e−jωki1A3

+

K/2∑
k=−K/2

L∑
l=0

hk(l)e−jωki1A4 + A5 (31)

where

A3 :=
1

T

T−1∑
n=0

ej(αm−ωq1+ωk)nb∗(n − d)

A4 :=
1

T

T−1∑
n=0

ej(ωk−ωq1 )nb(n − i1 − l)b∗(n − d)

A5 :=
1

T

T−1∑
n=0

e−jωq1nv(n − i1)b
∗(n − d).

We can show (as before) that

lim
T→∞

A3
m.s.
= 0 and lim

T→∞
A5

m.s.
= 0. (32)

Consider

A6 :=
1

T

T−1∑
n=0

ej(ωk−ωq1 )n [b(n − i1 − l)b∗(n − d)
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−σ2
bδ(d − i1 − l)

]
. (33)

It then follows (after some manipulations) that

E
{
|A6|2

}
=

1

T

[
E

{
|b(n)|4

}
− σ4

b

]
δ(d − i1 − l). (34)

Therefore, we have limT→∞ A6
m.s.
= 0, and consequently

lim
T→∞

A4
m.s.
=

1

T

T−1∑
n=0

ej(ωk−ωq1 )nσ2
bδ(d − i1 − l)

= σ2
bδ(d − i1 − l)δ(q1 − k). (35)

Hence, for “large” T , we have limT→∞ Rb (q1, i1)
m.s.
=

K/2∑
k=−K/2

L∑
l=0

hk(l)e−jωki1σ2
bδ(d − i1 − l)δ(q1 − k). (36)

For i1 = 0, 1, · · · , Le and q1 = −Q/2, 1 − Q/2, · · · , Q/2 but
|q1| ≤ K/2, we therefore have

lim
T→∞

Rb(q1, i1)
m.s.
= hq1(d − i1)e

−jωq1 i1σ2
b . (37)

If P > L + Le, then (30) equals (37) (within a scale
factor). Therefore, for “large” T , Rc(q1, i1) = βRb(q1, i1)
∀ q1, i1 with β = σ2

c/σ2
b ; hence gq(i) = βḡq(i) ∀ i.
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Figure 1. BER (averaged over 500 runs) for different number of
receive antennas and varying Doppler spreads. Equalizer length
Le=6, Q = 4 and P = 15. Each channel tap component follows
Jakes’ model (not CE-BEM). N= # of receive antennas; solid
curves: fd=0 (time-invariant); dot-dashed: fd=50 Hz; dashed:
fd=100 Hz.

4.4. Desired Equalizer Design
We execute the following steps:
(i) Pick Le and d (= Le

2
in Sec. 5). Pick Q ≥ K, P >

L + Le.
(ii) Solve (18), given data y(n), for gq(i) where 0 ≤ i ≤ Le

and −Q
2
≤ q ≤ Q

2
. Then

gd(n; i) =

Q/2∑
q=−Q/2

gq(i)e
jωqn. (38)

(iii) The equalized output is then given by

e1(n) =

Le∑
i=0

gH
d (n; i)y(n−i) ≈ α1c(n−d)+α2b(n−d)+ṽ(n)

(39)
where ṽ(n) is the equalized noise. Estimate α1 as

α̂1 =
1
T

∑T−1

n=0
e1(n)c∗(n − d)

1
T

∑T−1

n=0
|c(n − d)|2

=
1
T

∑T−1

n=0
e1(n)c∗(n − d)

σ2
c

.

(40)
(iv) Define

e2(n) = e1(n)− α̂1c(n− d) ≈ α2b(n− d) + ṽ(n). (41)

Then we hard-quantize e2(n) to estimate b(n − d).

5. SIMULATION EXAMPLE

We consider a random frequency-selective Rayleigh fad-
ing channel. We took N = 1, 2 or 3 (receiver anten-
nas), and L = 2 in (1) with h(n; l) mutually independent
for all l and all components, zero-mean complex-Gaussian
with equal variance, following Jakes’ model with specified
Doppler spread for each tap component. We consider a
system with carrier frequency of 2GHz, data rate of 40kB
(kB= kilo-Bauds), therefore, Ts = 25 × 10−6 sec., and a
varying Doppler spread fd. Additive noise was zero-mean
complex white Gaussian. The SNR refers to the energy per
bit over one-sided noise spectral density with both informa-
tion and superimposed training sequence counting toward
the bit energy. Information sequence was BPSK (binary).
We took the superimposed training sequence period P = 15
in (H3); it is periodically white, as in [4, Eqn. (34)]. The
average transmitted power in c(n) was equal to the power in
b(n), leading to a training-to-information power ratio (TIR)
of 1.0 .

The results averaged over 500 Monte Carlo for a record
length of T=405 (=15×27) symbols are shown in Fig. 1 for
various Doppler spreads (0, 50 and 100 Hz).
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