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ABSTRACT

In this paper, we propose a new blind minimum mean square er-
ror (MMSE) equalization algorithm of noisy single-input multiple-
outputs finite impulse response (SIMO-FIR) systems, relying only
on second order statistics. This algorithm offers an important ad-
vantage, a total independence of the channel order. Exploiting
the fact that the equalizer filter belongs both, to the signal sub-
space and to the kernel of truncated data covariance matrix, the
algorithm achieves blindly a direct estimation of the zero-delay
MMSE equalizer parameters. The proposed approach has several
features that are studied in this work. More precisely, we develop
a two-step procedure to further improve the performance gain and
to control the equalization delay. We present an efficient adap-
tive implementation of our equalizer, which reduces the compu-
tational complexity from O(n3) to O(n2p), where n is the data
vector length and p is the number of sensors. Simulation results
are provided to illustrate the effectiveness of the proposed blind
equalization algorithm.

1. INTRODUCTION

Since the pioneer work of Tong et al [1], active research in blind
Identification/Equalization area has led to a variety of second-order
statistics-based algorithms (see the book [2], as well as the ref-
erences therein). Many efficient solutions (e.g. [3]) suffer from
the lack of robustness against channel order overestimation errors.
A lot of research effort has been done to either develop efficient
techniques for channel order estimation [4, 5] or to develop blind
identification/equalization methods robust to channel order esti-
mation errors. Several robust techniques have been proposed so
far [6, 7, 8], but all of them depend explicitly or implicitly on the
channel order and hence have only a relative robustness. In this pa-
per, we describe a new technique for direct design of SIMO blind
MMSE equalizer, completely independent of the channel order.
We show first that the zero-delay equalizer filter belongs simulta-
neously, to the signal subspace and to the kernel of truncated data
covariance matrix. This property is used, under some weak con-
ditions, to estimate the parameters of the equalizer by maximizing
a certain quadratic form subject to a properly chosen constraint.
We present an efficient adaptive implementation of the novel al-
gorithm, having only O(n2p) complexity. A two-step estimation
procedure is included (in batch or adaptive way), which allows us
to compensate for the performance loss of the equalizer compared
to the non-blind one and to choose a non-zero equalization delay.

2. DATA MODEL

Consider a SIMO system of p outputs, given by

x(t) =

L�
k=0

h(k)s(t − k) + b(t), (1)

where h(z) =
�L

k=0 h(k)z−k is an unknown causal FIR p × 1
transfer function. We assume (A1) h(z) �= 0, ∀z. (A2) The input
(non-observable) signal s(t) is a scalar iid zero-mean process of
power σ2

s . (A3) b(t) is an additive spatially and temporally white
noise of power σ2

bIp and independent of the transmitted sequence
{s(t)}. By stacking N successive samples of the received signal
x(t) into a single vector, we obtain the n-dimensional (n = Np)
vector

xN(t) = [x(t)T
x(t − 1)T

. . . x(t − N + 1)T ]T

= HNsm(t) + bN (t), (2)

where sm(t) = [s(t) . . . s(t−m+1)]T , (m = N +L), bN(t) =
[b(t)T . . . b(t − N + 1)T ]T and HN is the channel convolution
matrix of dimension n × m, given by

HN =

�
��

h(0) · · · h(L) 0

. . .
. . .

0 h(0) · · · h(L)

�
�� . (3)

It is shown in [9], that if N > L and under assumption (A1),
matrix HN is full column rank.

3. ALGORITHM DERIVATION

3.1. MMSE equalizer

Consider a τ -delay MMSE equalizer (τ ∈ {0, 1, · · · , m − 1}).
Under the above data model, one can show that the n−dimensional
equalizer vector vτ corresponding to the desired solution is given
by

vτ = arg min
v

E(‖s(t − τ ) − v
H
xN(t)‖2) = C

−1
N gτ , (4)

where

CN
def
= E[xN(t)xN(t)H ] = σ

2
sHNH

H
N + σ

2
b In, (5)
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is the data covariance matrix and gτ is an n × 1 vector given by

gτ
def
= E(xN(t)s(t− τ )∗) = σ

2
sHN (:, τ + 1), (6)

where HN(:, τ +1) denotes the (τ +1)-th column vector of HN
1.

Clearly, the MMSE filter vτ belongs to the signal subspace (i.e.
range(HN)).

3.2. Blind equalization

Our objective here is to derive a blind estimate of the zero-delay
MMSE equalizer v0. From equations (4) and (6), v0 is given im-
plicitly by

CNv0 = σ
2
s

�
����

h(0)
0
...
0

�
���� . (7)

If we truncate the first p rows of system (7), we obtain

C̄v0 = 0, (8)

where C̄ is an (n−p)×n sub-matrix of CN given by its last n−p
rows, i.e.: C̄ = CN (p + 1 : n, :). It is obvious that v0 belongs
to the right null space of C̄. Next, we establish a link between the
structure of the right null space of C̄ and the zero-delay MMSE
equalizer.

Lemma 1 Under the above data assumptions and for N > L+1,
the right null space of C̄: nullr(C̄) = {z ∈ C

n : C̄z = 0}, is
a p−dimensional subspace, where only one direction of it belongs
to the signal subspace.

Proof: First, notice that the (n − p) × (n − p) matrix CN−1 is
a full rank sub-matrix of C̄. It follows that dim(nullr(C̄)) = p.
Let W ∈ C

n×m be an orthonormal basis of the signal subspace.
Since range(HN) = range(W) = range(CNW), there ex-
ists a non-singular m × m matrix R such that CNW = HNR.
Therefore, C̄W = [0(n−p)×1 HN−1]R. As HN−1 is full col-
umn rank, it implies that dim(nullr(C̄W)) = 1, what carries
out to conclude that only one direction of nullr(C̄) belongs to the
signal subspace. �

To extract the direction of nullr(C̄) which belongs to the signal
subspace (the direction of v0), we use the technique proposed in
[10]. The selection of the filter v corresponding to the equalizer
v0 is obtained by choosing the one with maximum power, i.e.

max
v∈nullr(C̄)

E(‖vH
xN(t)‖2) ⇔ max

‖ṽ‖=1
(ṽH

Bṽ), (9)

where B
def
= AHCNA, matrix A ∈ C

n×p is an orthonormal ba-
sis of nullr(C̄) and ṽ is a p-dimensional vector such as v = Aṽ.
Indeed, under the unit-norm constraint, the noise contribution in
(9) is of constant power and thus the maximization in (9) con-
cerns only the signal term. Besides, the other p − 1 directions of
nullr(C̄), that are complementary to v0, are almost in the noise
subspace (at least for high signal-to-noise ratio (SNR)). Therefore,
the maximization in (9) leads essentially to the selection of the de-
sired direction of vector v0. A batch-processing implementation
of the algorithm is summarized in table 1.

1We use here some informal MATLAB notations.

CN = 1
K

�K−1
t=0 xN (t)xN(t)H , (K: sample size)

(U, Σ,V) = svd(CN(p + 1 : n, :))
A = V(:, n − p + 1 : n)
B = AHCNA

ṽ = the dominant eigenvector of B

v = Aṽ

Table 1. Blind MMSE equalization algorithm.

3.3. Selection of the equalizer delay

It is shown in [7] that the blind estimation of the zero-delay MMSE
filter results in a performance loss compared to the non-blind one.
To compensate for this performance loss and also to have a con-
trolled non-zero delay which helps to improve the performance of
the equalizer, we propose here a two-step approach to estimate the
blind MMSE equalizer. In the first step, we estimate v0 according
to the previous algorithm, while, in the second step, we refine this
estimation by exploiting the a priori knowledge of the finite alpha-
bet to which belongs the symbols s(t). This is done by performing
a hard decision on the symbols2 that are then used to re-estimate
vτ according to equations (4) and (6). The two-step blind MMSE
equalization algorithm is summarized in Table 1 and Table 2.

Estimate s(t), t = 0..K − 1, (using v given by Table 1)
gτ = 1

K

�K+τ−1
t=τ xN(t)ŝ(t − τ )∗

vτ = C−1
N gτ

Table 2. Two-step equalization procedure.

4. ADAPTIVE IMPLEMENTATION

In order to reduce the global computational complexity of the al-
gorithm, from O(n3) to O(n2p), an adaptive implementation is
proposed. The columns of matrix A correspond to the p-least

eigenvectors of matrix Q
def
= C̄HC̄. Thus A can be obtained

as an orthogonal complement of the (n − p)-dimensional major
subspace of Q. If A⊥ ∈ C

n×(n−p) is an orthonormal basis of the
major subspace of Q then AAH = In −A⊥A⊥H .
As matrix CN is recursively updated by CN(t) = βCN (t− 1)+
xN (t)xN(t)H , where 0 < β < 1 is a forgetting factor, matrix C̄

is then replaced by the recursion C̄(t) = βC̄(t− 1) + xN−1(t−
1)xN (t)H . Thus, matrix Q(t) is recursively given by

Q(t) = β
2
Q(t − 1) + y1(t)y1(t)

H + y2(t)y2(t)
H

, (10)

2We assume here the use of a differential modulation to get rid of the
phase indeterminacy inherent to the blind equalization problem.
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where y1(t) and y2(t) are two n-dimensional vectors given by

y1(t) = σ(t − 1)(βx
′(t − 1) + λ(t − 1)xN(t)),

y2(t) = jσ(t − 1)(βx
′(t − 1) − 1

λ(t − 1)
xN(t)),

λ(t) =
1

2
(‖xN−1(t)‖2 +

�
4 + ‖xN−1(t)‖4), (11)

σ(t) =

�
λ(t)

1 + λ(t)2
, x

′(t) = C̄(t)H
xN−1(t).

It follows that matrix A⊥(t) can be considered as an orthonormal
basis of a major subspace of the virtual covariance matrix Q(t)
of data sequence {y1(t),y2(t)}t∈Z. From data vectors y1(t) and
y2(t), the columns of A⊥(t) can be extracted recursively when
performing twice a fast major subspace estimating and tracking al-
gorithm. In this work, we use the OPAST (Orthogonal Projection
Approximation Subspace Tracking) algorithm [11] that is summa-
rized in Table 3, where y′(t) stands alternatively for y1(t) and
y2(t). The choice of OPAST algorithm is motivated by its sim-
plicity and its remarkable performance compared to other existing
subspace tracking algorithms of similar computational complex-
ity. Finally, the extraction of the dominant eigenvector of B(t) is

y(t) = A⊥(t − 1)Hy′(t)
q(t) = 1

β
Z(t − 1)y(t)

γ(t) = 1
1+y(t)Hq(t)

p(t) = γ(t)(y′(t) − A⊥(t − 1)y(t))
r(t) = 1

‖q(t)‖2 ( 1√
1+‖p(t)‖2‖q(t)‖2

− 1)

p′(t) = r(t)A⊥(t − 1)q(t) + (1 + r(t)‖q(t)‖2)p(t)
Z(t) = 1

β
Z(t − 1) − γ(t)q(t)q(t)H

A⊥(t) = A⊥(t − 1) + p′(t)q(t)H

Table 3. OPAST algorithm.

obtained by power iteration as

ṽ(t) =
B(t)ṽ(t − 1)

‖B(t)ṽ(t − 1)‖ . (12)

The outline of the adaptive blind MMSE equalization algorithm is

given in Table 4. Using matrix inversion lemma, matrix F(t)
def
=

CN (t)−1 is updated recursively as

F(t) =
1

β
(F(t − 1) − f

′(t)f(t)H),

f(t) = F(t − 1)xN(t), (13)

ρ(t) = f(t)H
xN (t), f

′(t) =
f(t)

β + ρ(t)
.

Thus, the adaptive version of the two-step procedure is summa-
rized in Table 5. Note that the whole processing requires O(n2p)
operations per iteration.
Remark: It is possible to further reduce the computational com-
plexity to O(np). Matrix A(t) can be estimated directly in O(np)
operations using a fast minor subspace tracker such as FDPM (Fast
Data Projection Method) algorithm [12]. The computation of the
vector x′(t) = C̄(t)HxN−1(t) in (11) can be reduced from O(n2)
to O(np) by means of the technique described in [13], which ex-
ploits the shift invariance property of the correlation matrix. Us-
ing the projection approximation CN(t)A(t) ≈ CN (t)A(t− 1),

y1(t) = σ(t − 1)(βx′(t − 1)) + λ(t − 1)xN(t))
y2(t) = jσ(t − 1)(βx′(t − 1) − 1

λ(t−1)
xN(t))

(A′(t),Z′(t)) = OPAST(A⊥(t − 1), Z(t − 1), y1(t), β)
(A⊥(t),Z(t)) = OPAST(A′(t),Z′(t),y2(t), β)

Π(t) = In − A⊥(t)A⊥(t)H

A(t) = eigs(Π(t), p)
CN (t) = βCN(t − 1) + xN(t)xN(t)H

B(t) = A(t)HCN (t)A(t)

ṽ(t) = B(t)ṽ(t−1)
‖B(t)ṽ(t−1)‖

v(t) = A(t)ṽ(t)
C̄(t) = CN(t)(p+1:n,:)

x′(t) = C̄(t)HxN−1(t)

λ(t) = 1
2
(‖xN−1(t)‖2 +

�
4 + ‖xN−1(t)‖4)

σ(t) =
�

λ(t)

1+λ(t)2

Table 4. Adaptive blind MMSE equalization algorithm.

Table 5. Adaptive two-step equalization procedure.

Estimate ŝ(t), (using v(t) given by Table 4)
f(t) = F(t − 1)xN (t)
ρ(t) = f(t)HxN(t)

f ′(t) = f(t)
β+ρ(t)

vτ (t) = vτ (t − 1) − f ′(t)(f(t)Hgτ (t − 1) − ŝ(t − τ )∗)
F(t) = 1

β
(F(t − 1) − f ′(t)f(t)H)

gτ (t) = βgτ (t − 1) + xN(t)ŝ(t − τ )∗

which is valid if matrix A(t) is slowly varying with time [11], ma-
trix B(t) can be updated in O(np) operations. Finally the equal-
izer filtervτ (t) in the two-step procedure can be computed via nor-
malized least mean square (NLMS) algorithm only in O(np) op-
erations. However, the major disadvantage of this approach comes
from the fact that fast O(np) minor subspace tracker algorithms
suffer from local minima problem when the minor subspace’s di-
mension is much lower than that of the total subspace, i.e.: p � n

(which is exactly, the situation we are facing herein).

5. SIMULATION RESULTS

We provide in this section some simulation examples to illustrate
the performance of the proposed blind equalizer. Our tests are
based on SIMO channels (p = 3 and L = 4). The channel coef-
ficients are chosen randomly at each run according to a complex
Gaussian distribution. The input signals are iid unit-power QAM4
sequences. The width of the temporal window is N = 6. As
a performance measure, we estimate the average MSE given by
MSE = 1

K

�K+τ+1
t=τ (|s(t − τ ) − v̂H

τ xN(t)|2) (resp. MSE(t) =

|s(t− τ )− v̂τ (t)HxN(t)|2) in batch processing case (resp. adap-
tive case), over 100 Monte-Carlo runs. The MSE is compared to
the theoretical MSE given by MSEth = 1 − gH

τ C−1
N gτ . SNR

is defined by SNR = −20 log(σb). In Fig.1, we plot the MSE
(in dB) against SNR (in dB) for K = 500. One can observe the
performance loss of the zero-delay MMSE filter compared to the
optimal one (especially at high SNRs) due, as shown in [7], to
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the blind estimation procedure. Also, it illustrates the effective-
ness of the two-step approach, which allows us to compensate for
the performances loss and to choose a non-zero equalization de-
lay. Fig.2 illustrates the convergence rate of the adaptive algo-
rithm with SNR= 15dB. Fig.3 is dedicated to robustness against
overestimation errors. The plots compare the MSE obtained by
the algorithms in [7, 8] to those obtained by our algorithm (exact
order L = 4, SNR= 15dB, K = 500). Clearly, our method is
insensitive to channel order over-estimation errors.
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Fig. 1. Performance of the equalizer.
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Fig. 2. Convergence of the adaptive equalizer.
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Fig. 3. Robustness against channel order over-estimation errors.

6. CONCLUSION

In this paper we have proposed a blind equalization technique for
SIMO-FIR systems that does not need an estimate of the channel
order. Batch and adaptive implementation are developed. A two-
step approach, using the a priori knowledge of the source signal
finite alphabet, has been proposed to compensate for the perfor-
mance loss and to choose a non-zero equalization delay. Note that,
the extension of the proposed technique to MIMO case is straight-
forward.
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