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ABSTRACT

Motivated by increasing interest in energy efficient modulations, we
investigate a blind algorithm for biorthogonal signaling. While this
modulation has historically been considered only for use in nar-
rowband systems without intersymbol interference (ISI), recent at-
tention has been given to its use in ISI channels. Due to the fact
that biorthogonal modulation (BOM) results in a source that is not
i.i.d., however, classical adaptive equalization techniques cannot be
directly applied to equalization of BOM signals. We review the
MMSE and LMS-based equalizers, and then identify some peculiar-
ities that arise in blind equalization of BOM signals when compared
to more traditional modulations like BPSK. Next, we present a novel
blind algorithm, called TROMBONE, for the adaptive equalization
of BOM signals. We discuss the convergence properties of this algo-
rithm, and demonstrate its performance with numerical simulations.

1. INTRODUCTION

Increasing amounts of available unregulated spectrum, combined
with an increasing demand for battery-operated wireless devices has
spurred an interest in modulation schemes that give up some band-
width efficiency in exchange for energy efficiency. Biorthogonal
modulation (BOM) or M -ary biorthogonal keying (MBOK) is one
such modulation scheme that has recently been considered for use
in several consumer wireless standards. In the WLAN and WPAN
applications where BOM has been considered, it is well-known that
intersymbol interference (ISI) will be present, and ISI is viewed to
be a serious impairment to acceptable performance. While the opti-
mum detector in ISI is the maximum likelihood sequence estimator
(MLSE), its complexity is usually too high for practical implementa-
tion, and thus suboptimal schemes are desirable. Several very recent
works have addressed this issue, notably [1] and [2]. In [1], a blind
algorithm was developed for BOM based on a dispersion minimiza-
tion criterion. Non-adaptive ISI compensation for BOM signals was
considered in [2], wherein the authors conduct a simulation study
of a reduced state Viterbi equalizer for BOM which was still quite
complex and required perfect channel knowledge.

In this paper, we begin by reviewing the basics of BOM and the
use of trained and decision-directed (DD) least mean squares (LMS)
adaptive algorithms for equalization of BOM. Then, we address the
unsuitability in using the two most popular classical blind algorithms
— the Constant Modulus Algorithm (CMA) and the Shalvi-Weinstein
Algorithm (SWA). Though these classical algorithms are unsuitable
for BOM, it is useful to consider them in the design of new algo-
rithms for blind equalization of BOM. Whereas the blind algorithm
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for BOM proposed in [1] had connections to CMA, our main contri-
bution in this paper is a novel blind algorithm for BOM in the spirit
of the Shalvi-Weinstein algorithm, and thus it relies on a spectral
prewhitener before equalization. We show that the ZF solutions are
stationary points of TROMBONE, and we present several numerical
examples and simulations which demonstrate its performance rela-
tive to DD-LMS and the algorithm proposed in [1].

Throughout this paper, we assume all signals are real. We use
� to denote matrix transpose, [S]i,j to denote the i, jth entry of the
matrix S, and [S]i to denote the ith column of the matrix S. The
unit vector consisting of a 1 in the ith location will be denoted ei,
and the function δ[n] will be the discrete Kronecker delta function.

2. BACKGROUND

2.1. Biorthogonal Modulation

An M -ary biorthogonal symbol contains M/2 chips, and is con-
structed by drawing from a set of M/2 orthonormal waveforms and
their negatives, resulting in M possible symbols. Let K � M/2
and S ∈ R

K×K such that S�S = I is an orthogonal matrix
whose columns comprise the basis for the biorthogonal waveforms.
Since S is square, that the rows of S are also orthonormal, i.e.
SS� = I . We denote the symbol transmitted at time n by x[n]
where x[n] ∈ {±[S]0,±[S]1, . . . ,±[S]K−1}, and we assume all
symbols are i.i.d. and equiprobable. We use a polyphase representa-
tion for the corresponding serial chip-rate process, denoting the ith
chip of the nth symbol by x[Kn − i], where i ∈ {0, . . . , K − 1}.

While the symbols are i.i.d., the chips are most certainly not.
Nevertheless, the second-order statistics of the chip-rate random pro-
cess are decorrelated and obey

E [x[Kn − i]x[Km − j]] = 1/Kδ[n − m]δ[i − j]

which can be shown by using the fact that the symbols are i.i.d. and
zero-mean, and that the rows of S are orthonormal.

2.2. System Model

The system model is shown in Fig. 1. The BOM chips x[Kn − i]
are transmitted through a causal linear time-invariant channel with
finite impulse response h = [h[0], h[1], . . . , h[Nh − 1]]� and addi-
tive white Gaussian noise w[Kn − i] of variance σ2

w. The received
chip stream y[Kn − i] is passed through a linear equalizer with im-
pulse response f = [f [0], f [1], . . . , f [Nf − 1]]. We express the
channel impulse response in matrix form by defining H ∈ R

Nf×Nc

as the Tœplitz channel impulse response matrix where [H]i,j =
h[j − i]. Then, the regressor matrix Y [n] ∈ R

Nf×K of received
chips can be written Y [n] = HX [n] + W [n] where Nc � Nf +
Nh − 1, X [n] ∈ R

Nc×K is the Hankel matrix of chips defined as
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[X [n]]i,j = x[Kn − i − j], and W [n] ∈ R
Nf×K is the Hankel

matrix of noise samples defined as [W [n]]i,j = w[Kn − i − j].
Then, the symbol output by the equalizer at time n can be written
z[n] = Y �[n]f .

The equalizer output is passed into the decision device, which
is assumed to be the memoryless Euclidean distance detector (i.e. a
correlation detector [3]). This can be implemented simply by form-
ing the correlation S�z[n], and deciding in favor of the compo-
nent with largest magnitude while taking the sign into account. We
have chosen this detector for its simplicity and low latency. When
the equalizer is operating correctly, the decision device output is
x̂[n] ≈ x[n − ∆] where ∆ is the symbol delay through the com-
bined channel and equalizer. We will also use the combined chan-
nel/equalizer response, which can be written as c � H�f .

decision

device

x[n]

w[n]

y[n]

fh

z[n] x̂[n]

Fig. 1. System Model

3. CLASSICAL EQUALIZATION APPLIED TO BOM

3.1. MMSE and LMS Equalizers

The minimum mean squared error equalizer, a standard benchmark
of equalizer performance, follows from straightforward Wiener filter
theory, and was previously presented in [1] as

fMSE =
(
HH� + Kσ2

wI
)−1 HeK∆. (1)

Since the mean-squared error is quadratic, we can use the LMS algo-
rithm to calculate f adaptively when training data is available. This
results in the LMS update equation

fLMS [n + 1] = fLMS [n] − µY [n] (z[n] − x[n − ∆])

where µ is a small positive step-size. The presence of x[n−∆] in the
update term implies the availability of training data; when training
data is unavailable, we can replace x[n − ∆] with the output of the
decision device, x̂[n], resulting in the DD-LMS algorithm.

Decision-directed algorithms typically require an open eye ini-
tialization, and as discussed in [1] the open eye regime for BOM is
in general smaller than the open eye regime for traditional BPSK.
Decision directed adaptation is generally not a good choice for cold
startup of BPSK equalizers, and the situation may only be worse for
BOM signals. This motivates the search for blind methods of equal-
izer adaptation for BOM other than decision direction.

3.2. Classical Blind Approaches

When faced with the task of designing a blind adaptive equaliza-
tion algorithm for a new modulation scheme, a natural path is to
consider the use of classical approaches. The two most common
classical algorithms are the CMA [4] and the Shalvi-Weinstein algo-
rithm (SWA) [5]. The CMA is a dispersion minimization algorithm
that requires that the source sequence to have sub-Gaussian kurtosis,
since for sources with super-Gaussian kurtosis the CMA results in
ISI enhancement [6]. The BOM chips can easily be shown to have
super-Gaussian kurtosis, for example when S = I and K > 3, and
thus the CMA is not a suitable choice for equalization of BOM sig-
nals. The SWA, on the other hand, can still be used on sources with

super-Gaussian kurtosis, by a simple sign change in the algorithm
[5]. The SWA maximizes the magnitude of the kurtosis of the equal-
izer output, where the cost is JSWA(f ) = |C4(z[Kn − i])| with
a unit-norm constraint on the equalizer taps. Note that the SWA,
being a constrained algorithm, has the additional requirement that
pre-whitening be performed before equalization so that the effective
channel is white. The rationale for this criterion is based on the fact
that, for i.i.d. sources, and when the equalizer output power is con-
strained to equal the power of the source process, the magnitude of
the channel/equalizer output kurtosis is less than or equal to the mag-
nitude of the source kurtosis, or |C4(z[Kn−i])| ≤ |C4(x[Kn−i])|.
Equality occurs when ISI has been eliminated, and so constrained
maximization of JSWA(f ) seems like a sensible approach. As is the
case with the CMA, however, the standard analysis [5] of the SWA
assumes that the source is i.i.d. The fact that the BOM chips are
not i.i.d. causes the kurtosis of the BOM source to be periodically
time-varying with period K. This presents a problem since some
phases of the signal at the channel/equalizer output can have kur-
tosis less than the source signal, while other phases can be greater.
This situation occurs, for example, when a BOM source with S = I
and K = 2 passes through the channel/equalizer c = [1, 1]�/

√
2,

resulting in |C4(z[Kn − 1])| < |C4(x[Kn − i])| < |C4(z[Kn])|.
This violates the fact upon which the motivation for SWA was based,
and so the non-i.i.d. nature of the BOM signal also renders the SWA
unsuitable as a candidate algorithm.

4. THE TROMBONE ALGORITHM

4.1. Algorithm Description

As we have discussed, the two most popular classical blind equal-
ization algorithms are the CMA and the SWA. Since previous study
of an algorithm for BOM drew largely from the spirit of the CMA
[1], a sensible next step is to consider how we might apply the SWA
philosophy to equalization of BOM signals.

When the channel has been appropriately equalized, the correla-
tor output S�z[n] should be a canonical unit vector (modulo sign).
We observe that for any �p norm, we desire ||S�z[n]||p = 1. For
any p < q and any vector x, we have ||x||mp ≥ ||x||mq with equality
when x is a canonical unit vector. This fact is the motivation for
our algorithm, termed “TROMBONE” (for The Recovery Of M -
ary BiOrthogonal signals via p-Norm Equivalence) and having cost
function

JTRO(f ) = E
[
||S�z[n]||mp − ||S�z[n]||mq

]
. (2)

When the equalizer is operating correctly so that the correlator out-
puts are “perfect”, the cost will be zero as hoped. We also note that
the trivial solution has zero cost, so to avoid this solution we need to
impose a constraint on the algorithm. Here, we choose to constrain
the equalizer output power to be E[||z[n]||22] = E[||x[n]||22], which
amounts to c�c = 1 in the absence of noise. While in general we
could consider any m, p, q so long as p < q, we focus on the case
p = 2, m = q = 4. Just as the fourth-order cumulant (i.e. the kurto-
sis) can be defined for an i.i.d. scalar random process, cumulants can
also be defined for i.i.d. vector random processes [7]. Expanding our
cost in terms of cumulants, the cost becomes

JTRO(f ) = E
[
||S�z[n]||42 − ||S�z[n]||44

]
(3)

=
∑
i,j
i�=j

[C4(S
�z)]i,i,j,j + 2

∑
i,j

[
C2(S

�z)
]2

i,j
(4)

+

(∑
i

[
C2(S

�z)
]

i,i

)2

− 3
∑

i

[
C2(S

�z)
]2

i,i
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The constraint that we have imposed, i.e. c�c = 1, is a function
of the combined channel/equalizer response. In practice, we do not
have knowledge of c. However, if we assume spectral pre-whitening
has been performed before equalization as in [5], thereby assuming
the effective channel is white, the constraint becomes

c�c = 1 =⇒ f�HH�f = f�f = 1

so that normalization of the equalizer taps ensures that we will meet
the constraint. The instantaneous gradient gives the algorithm update
equation with a normalization step as

f ′
TRO[n + 1] = fTRO[n] − µY [n] ·(

z[n]�z[n]I − S diag(S�z[n])2S�
)

z[n]

fTRO[n + 1] = f ′
TRO[n + 1]/

√
f

′�
TRO[n + 1]f ′

TRO[n + 1]

where diag(x) is the square diagonal matrix having x along its di-
agonal.

We see this algorithm does appear to have some vague simi-
larities with the SWA in that we have a constrained cost function,
motivated by the fact that ||S�z[n]||24 ≥ ||S�z[n]||44 with equal-
ity when ISI has been eliminated. The algorithm also shares some
similarity with the Shtrom-Fan algorithms [8] in that it involves a
difference of two �p-norms. Beyond this similarity, however, our al-
gorithm is fundamentally different from the Shtrom-Fan algorithms
which require the data to be i.i.d. at the chip level.

We define the ZF solutions as those where the combined chan-
nel/equalizer response c = eK∆. Note that, unlike more traditional
equalization problems, our definition of the ZF solutions only in-
cludes responses with delays that are a multiple of K. In situations
where the delay is not a multiple of K, the decision device will not
be operating on the symbol boundary, and these points are not gen-
erally stable points of the algorithm.

We will now show that the ZF solutions are stationary points.
Taking the derivative of the unconstrained TROMBONE cost func-
tion, and exploiting the linearity property of cumulants gives

1

4

∂JTRO(f )

∂f [n]
=

∑
m

h[p − n]Λ[m]

where Λ[m] is defined on the next page in (6).
To see the that ZF solutions are stationary points of the TROM-

BONE cost function, we evaluate the gradient at c = eK∆ (which,
we should note, satisfies the unit-norm constraint). Indeed, after sub-
stitution, the gradient reduces to the all zero vector, and thus the ZF
solutions are stationary points of the algorithm. We could equiva-
lently use the method of Lagrange multipliers, but since the ZF solu-
tions are stationary points and simultaneously satisfy the unit-norm
constraint, the Lagrange multiplier is zero. From our observations
through simulation, we believe the stationary points at the ZF solu-
tions are also locally stable, as we have tested this claim on thou-
sands of pre-whitened channels. Simple examination of the Hessian
eigenvalues of constrained algorithms does not allow us to gener-
ically classify these stationary points as minima; we would need
to resort to perturbation analysis or re-parameterization of the cost
function as we will now show in a low dimensional example.

4.2. Example 1: Stationary Points in Low Dimensions

We now classify all the stationary points for a low-dimensional ex-
ample. Working in the combined channel/equalizer domain c, we let
S = I2 and Nc = 3. Because the unit norm tap constraint is diffi-
cult to apply in the c domain, we need a transform to re-parameterize

Table 1. TROMBONE Stationary Points for Example 1
c� type

±[1, 0, 0],±[0, 0, 1] minima

±[
√

1/2, 0, −√
1/2],±[

√
1/2, 0,

√
1/2] saddle points

±[0, 1, 0] deg. saddle pts

the cost function in a coordinate system that permits us to easily ap-
ply the constraint. We can re-parameterize the function of c in polar
coordinates, having Nc−1 rotation angles {θ0, . . . , θNc−2} and one
radius r. One possibility [6] for parameterizing c in polar form is to
choose

c[n] =

{
r sin(θn)

∏n−1
j=0 cos(θj) 0 ≤ n ≤ Nc − 2

r cos(θNc−1)
∏Nc−2

j=0 cos(θj) n = Nc − 1
(5)

so that by fixing r = 1, any arbitrary unit-norm c may be reached
for an essentially unique choice of rotation angles.

Substituting (5) into the TROMBONE cost function with S =
I2, setting the gradient to zero, and zeroing all but Nc = 3 taps
results in a system of equations in two parameters, θ0 and θ1. We
can solve for the locations of all stationary points exactly, and they
have been tabulated in Table 1. For this particular example, we see
that the only minima of the TROMBONE cost surface are the ZF
solutions. There are not minima at c = ±[0, 1, 0]�, and this point
was specifically excluded in our definition of ZF solutions since the
delay is not a multiple of K; however, this point corresponds to a
degenerate saddle point, which implies the cost surface is very flat,
and the adaptive algorithm may suffer convergence speed problems
as it passes through this region.

4.3. Example 2: False Minima of TROMBONE

While Example 1 provides some hope of convergence to solutions
with globally optimal performance, we now investigate stationary
points that arise in impulse responses with larger lengths of con-
tiguous non-zero taps. We conducted a (non-exhaustive) numerical
search for stationary points with larger channel/equalizer lengths,
while maintaining S = I2. The ZF solutions are of course minima
in this situation, but we do observe the presence of additional local
minima once the number of non-zero taps grows to Nc ≥ 6.

Through experimentation (and analytic confirmation) we found
a class of stationary points with impulse response of the form c∗ =
±[0, α, β, γ, −β , α]�, for α ≈ 0.2973, β ≈ 0.5425, γ ≈ 0.4844,
which was found to be a minimum by analysis of the re-parameterized
Hessian. As Nc is increased beyond 6, this minimum persists in
higher dimensions. And, any K = 2 tap shift of this impulse re-
sponse is also a local minimum (i.e. any response obtained by adding
an even number of zeros to the front).

5. NUMERICAL EXAMPLES

5.1. Visualizing the TROMBONE Cost Surface

Considering the noiseless case with S = I2 and Nc = 2, we have
plotted a 2-D slice of the unconstrained TROMBONE cost surface
in Fig. 2a. The unit norm constraint will force the algorithm to stay
on contour indicated by the dotted circle in these two dimensions.
For the case of S = I , the cost surface is a single trough with a bulb
at the origin, and the cost is zero along the c[0] axis.

Identifying the stationary points from the unconstrained cost,
however, is not easy. Thus, similar to what was done in Section 4.2,
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Λ[m] =
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
k1,k2

∑
p

δ[Kp + i1 − k1 − m]c[Kp + i2 − k1]c[Kp + i3 − k2]c[Kp + i4 − k2] (6)

−
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
k1,k2,k3,k4

∑
j

[
[S]k1,j [S]k2,j [S]k3,j [S]k4,j

∑
p

δ[Kp + i1 − k1 − m]c[Kp + i2 − k2]c[Kp + i3 − k3]c[Kp + i4 − k4]

]

− 3
K2

∑
i1,i2,i3,i4

∑
j

[S]i1,j [S]i2,j [S]i3,j [S]i4,j

∑
p

c[m + i1 − i2]c[p − i3]c[p − i4] +
2

K2

∑
p

∑
k1,k2

c[m + k1 − k2]c[p − k1]c[p − k2] + c[m]

(∑
p

c2[p]

)

−1 0 1

−1

0

1
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Fig. 2. TROMBONE Cost Surface for S = I

we transform the 2-parameter cost plot into polar coordinates with
a single rotation angle. Looking at the cost function in polar coor-
dinates, where the angle θ = tan−1(c[1]/c[0]), we can more easily
see the stationary points as shown in Fig. 2b. There are minima at
the ZF solutions, as well as minima at c = ±[0, 1]�, though this lat-
ter minimum is quite shallow. Stationary points of low-dimensional
slices may change their character in higher dimensions; we know
from Example 1 that the stationary point at c = ±[0, 1]� becomes a
degenerate stationary point in higher dimensions.

5.2. Simulation Near Zero-Forcing Solutions

To provide verification that our analysis of the local behavior of
our algorithm is valid, we consider a simulation where we initial-
ize the algorithm in a ball around a ZF solution, and observe the
ability of the algorithm to converge as the ball radius is increased.
We operate in a noiseless scenario, a channel with response h =
[−0.4, 0.84, 0.336, 0.1344, 0.0538, 0.0215]�, we have chosen Nf =
30 equalizer taps, and we choose the signal bases S = I2. Note that
the channel is approximately white (i.e. HH� ≈ I), and the corre-
sponding ZF equalizer satisfies f�

ZF fZF = 1.
As initializations, we chose 1,000 points uniformly distributed

in a ball around the ZF solution, and we observed the ability of the
algorithms to converge to a ZF solution as the radius of the ball in-
creased. We ran the algorithms for 10,000 symbols at each of the
1,000 initializations, and declared the algorithm to have converged
if the MSE was less than 10−3. As shown in Fig. 3, all of the algo-
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Fig. 3. Convergence percentage vs. initialization distance from ZF
solution

rithms converge to the ZF solution when the size of the ball of ini-
tializations around the ZF solution is less than 1, thus verifying our
analysis of local convergence. For larger radii beyond 1, which we
can hardly consider to be “local” to the ZF solutions, we see that all
algorithms still converge with a fairly high percentage, though pos-
sibly to a ZF solution corresponding to another delay. Furthermore,
the blind algorithms both outperform DD-LMS. The curves are all
monotone non-increasing, albeit with some jumps due to the nonlin-
ear nature of the cost surfaces, and for large radii the convergence
percentages eventually reach a constant value. This is because, be-
yond a sufficiently large initialization ball radius, there is no notion
of locality; the ball grows to encompass the entire space, and so in-
creasing the radius further has no effect on convergence percentage.

5.3. Conclusion

While energy efficient modulations are being given serious attention
by industry for use in environments with ISI, little attention has been
given to equalization of such signals. Due to the non-i.i.d. nature of
these signals, direct application of classical equalization techniques
is not possible. We have attempted to address this difficulty, and
have proposed a novel blind algorithm for the equalization of BOM
signals. We then addressed the local convergence of this algorithm,
and demonstrated its performance.
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