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ABSTRACT

This paper presents an optimum power allocation strategy for the max-
imum likelihood based channel estimation in the space-time coded
multiple-input multiple-output systems employing a data-bearing ap-
proach for pilot-embedding. The corresponding channel estimation
error, the Chernoff’s upper bound on the detection error probability,
and a lower bound on channel capacity of such systems are analyzed.
Based on such analysis, the relationship between these two bounds
are revealed, then a unified optimum power allocation scheme is pro-
posed based on jointly optimizing both bounds subject to an acceptable
channel estimation error. Simulation results indicate that the proposed
power allocation scheme yields a better performance in terms of the
error probability, whereas the equal power allocation scheme can be
reasonably used as a suboptimum approach with an acceptable perfor-
mance degradation. Furthermore, the unequal power allocation with
more power constantly allocated to the data part yields a much better
performance than the one with more power constantly allocated to the
pilot part.

1. INTRODUCTION

A space-time (ST) coded multiple-input multiple-output (MIMO) sys-
tem is a prominent communication system for future wireless commu-
nications due to its diversity gain that significantly improves an error
probability performance without increasing transmission power [1, 2].
Typically, for such a system employing a coherent receiver, channel
state information is crucially needed. Hence, a research on channel
estimation is of interest.

Recently, many channel estimation approaches [3]-[5] have been
proposed for such a system by employing a pilot signal, a known sig-
nal transmitted from the transmitter to the receiver. In [4], a linear
minimum mean-squared error (LMMSE) channel estimation has thor-
oughly been investigated, including an optimum pilot structure, an op-
timum power allocation for pilot and data parts, and an optimum num-
ber of the pilot signal, based on the analysis of a lower bound on chan-
nel capacity. In [5], we proposed a data-bearing approach for pilot-
embedding for joint channel estimation and data detection, where a
maximum-likelihood (ML) channel estimator was investigated. In [5],
the optimum power allocation scheme based on minimizing a Cher-
noff’s upper bound on error probability has been discovered for the
case of square-matrix ST codes. However, there is a lack of a thorough
investigation for the ML channel estimator in ST coded MIMO sys-
tems employing arbitrary-matrix ST codes, and a comprehensive com-
parison between different optimum power allocation strategies based
on different criteria. To address these concerns, the main contributions
of this paper are as follows,

• A unified optimum power allocation, based on jointly optimiz-
ing Chernoff’s upper bound on error probability and the lower
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bound on channel capacity subject to an acceptable channel es-
timation error, is developed for the ML channel estimator in the
ST coded MIMO systems employing arbitrary-matrix ST codes.

• The relationship between these two bounds is revealed through
an effective signal-to-noise ratio (SNR).

• For the case that no information about the SNR of such sys-
tems is available to the transmitter, an equal power allocation
scheme can be used as a reasonable suboptimum approach with
an acceptable performance degradation.

The rest of this paper is organized as follows. In Section 2, we de-
scribe the MIMO channel and system models first, then briefly review
the data-bearing approach for pilot-embedding. In section 3, perfor-
mance analysis, including the channel estimation error, the Chernoff’s
upper bound on error probability, and the lower bound on channel ca-
pacity, is presented, and the optimum power allocation is developed
in Section 4. The simulation results are shown in Section 5, and we
conclude this paper in Section 6.

2. THE DATA-BEARING APPROACH FOR
PILOT-EMBEDDING

2.1. MIMO Channel and System Models

We briefly describe the MIMO channel and system models used in this
paper. We consider the MIMO communication system with Lt trans-
mit antennas and Lr receive antennas. In general, for a given block
index t, a ST symbol matrix U(t) is an Lt × M codeword matrix
transmitted across the transmit antennas in M time slots. The received
symbol matrix Y(t) at the receiver front-end can be described as fol-
lows [5],

Y(t) = H(t)U(t) + N(t), (1)

where H(t) is the Lr × Lt channel coefficient matrix and N(t) is the
Lr×M additive complex white Gaussian noise matrix with zero mean
and variance σ2

2
I(MLr×MLr) per real dimension. The elements of

channel coefficient matrix H(t) are assumed to be independent com-
plex Gaussian random variables with zero mean and variance 0.5 per
real dimension. Or equivalently, an independent Rayleigh fading chan-
nel is assumed. We first estimate the channel coefficient matrix H(t)
and the ST symbol matrix U(t) by using the pilot or training signal
embedded in the ST symbol matrix U(t).

2.2. The Data-Bearing Approach for Pilot-Embedding

In what follows, we summarize the data-bearing approach for pilot-
embedding proposed in [5]. In this approach, the pilot signal is firstly
added into the ST data, and then this signal combination is regarded as
the ST symbol. The proposed pilot-embedded ST symbol matrix U(t)
can be expressed as follows,

U(t) = D(t)A + P, (2)

where D(t) ∈ C
Lt×N is the ST data matrix, A ∈ R

N×M is the data
bearer matrix with N being the data time slots, and P ∈ R

Lt×M is the
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pilot matrix. In addition, the power constraint of E[‖D(t)‖2] = Lt

is maintained. The necessary properties for the proposed data-bearing
approach for pilot-embedding are as follows,

APT = 0 ∈ R
N×Lt ,PAT = 0 ∈ R

Lt×N ,

AAT = βI ∈ R
N×N ,PPT = αI ∈ R

Lt×Lt , (3)

where β is a real-valued data-power factor, α is a real-valued pilot-
power factor, 0 stands for an all-zero-element matrix, and I stands for
an identity matrix.

There are, at least, three possible structures of data-bearer and
pilot real-matrices that satisfy the properties in (3) including Time-
Multiplexing (TM)-based matrices, ST-Block-Code (STBC)-based ma-
trices, and Code-Multiplexing (CM)-based matrices [5]. In this paper,
we study the optimum power allocation for the case of quasi-static
fading channels, where H(t) in (1) remains constant over each sym-
bol block but it changes block-by-block independently. This channel
model makes sense in our study because we employ the channel esti-
mate in each symbol block to decode the ST data matrix in the same
symbol block, hence, the effect of power optimization on the estima-
tion and decoding performances of receivers, i.e. the mean-squared
error (MSE) and error probability, respectively, are correctly charac-
terized. In addition, this channel model has also been studied in [4]
for the LMMSE channel estimation. Since all three structures yield
the same performances for quasi-static channel model [5], we use the
TM-based matrices as their representative in this paper, given as

A =
√

β
[
0(N×Lt); I(N×N)

]
,

P =
√

α
[
I(Lt×Lt);0(Lt×N)

]
, M = N + Lt, (4)

where ; stands for matrix combining. In this structure, the Lt × Lt

identity matrix I is used as a pilot or training symbol. In addition, it
has been shown in [5] that the CM-based matrices are the best structure
among all other structures for nonquasi-static fading channels, where
H(t) changes according to a process whose dominant frequency is
much faster than 1

M
or, in the other words, H(t) is not constant over

each symbol block. Also, it is worth mentioning that the power al-
location scheme proposed later can be generally applied to different
data-bearer structures in [5].

2.2.1. Maximum-Likelihood Channel Estimation

The ML channel estimation procedure can be summarized as follows:
1.) Post-multiplying the received symbol matrix Y(t) in (1) by the

transpose of the pilot matrix PT ; dividing the result by α; and using
the properties in (3) to arrive at

y(t) = h(t) + n(t), (5)

where y(t) � vec(Y(t)PT

α
), h(t) � vec(H(t)), n(t) � vec

(N(t)PT

α
) with vec(·) being vectorizing conversion.

2.) The ML channel estimator that maximizes the log-likelihood
function ln(p(y(t)|h(t))) is given by

ĥ(t) = y(t) or Ĥ(t) =
Y(t)PT

α
. (6)

2.2.2. Maximum-Likelihood Data Detection

The ML data detection procedure can be summarized as follows:
1.) Post-multiplying the received symbol matrix Y(t) in (1) by the

transpose of the data bearer matrix AT ; dividing the result by β; and
using the properties in (3) to arrive at

Y1(t) = H(t)D(t) + N1(t), (7)

where Y1(t) = Y(t)AT

β
and N1(t) = N(t)AT

β
.

2.) The ML receiver is employed by computing the decision matric
and deciding the codeword that minimizes this decision matric [6],

{d̂i
k} = min{di

k
}
{∑N

k=1

∑Lr
j=1 |yj

k − ∑Lt
i=1 ĥj,id

i
k|2

}
,

∀di
k, i ∈ {1, . . . , Lt}, k ∈ {1, . . . , N}, (8)

where yj
k denotes the (j, k)th element of Y1(t) in (7), ĥj,i denotes the

(j, i)th element of Ĥ(t) in (6), and d̂i
k denotes the (i, k)th element of

the estimated ST data matrix D̂(t).

3. PERFORMANCE ANALYSIS

In this section, we first analyze the channel estimation error of the
ML channel estimator. Then, we examine the detection performance
of the ML receiver by analyzing the Chernoff’s upper bound on error
probability, in which that of channel estimation error is taken into ac-
count. Finally, we analyze the lower bound on channel capacity of the
ST coded MIMO systems, in which that of channel estimation error is
also taken into consideration.

3.1. Channel Estimation Error

A channel estimation error vector can be expressed as follows,

h̃(t) = h(t) − ĥ(t). (9)

Substituting (6) into (9), after some algebraic manipulations, the
variance matrix of the channel estimation error is given by

Var
[
h̃(t)

]
=

σ2

α
I(LtLr×LtLr). (10)

The Total MSE of the ML channel estimation is given by

Total MSE = trace
{

Var
[
h̃(t)

]}
=

σ2LtLr

α
. (11)

3.2. Chernoff’s Upper Bound on Error Probability

Assuming full rank ST codes are employed, which can be relaxed
in general, and considering independent Rayleigh distributions of the
channel, the Chernoff’s upper bound of the average probability of trans-
mitting a codeword d � (d1

1d
2
1 · · · dLt

1 · · · d1
Nd2

N · · · dLt
N )T and decid-

ing in favor of a different codeword e � (e1
1e

2
1 · · · eLt

1 · · · e1
Ne2

N · · · eLt
N

)T is given by [6] (see also [5]),

P (d → e)Ĥ(t) ≤
(∏Lt

i=1 λi

)−Lr

⎛
⎜⎜⎜⎜⎜⎜⎝

N

4σ2
· σ2

Q(
N
β

+ Lt
α

)
︸ ︷︷ ︸

Effective SNR1

⎞
⎟⎟⎟⎟⎟⎟⎠

−LtLr

(12)

where λi is the eigenvalue of the code-error matrix C(d, e) defined as
Cp,q = xH

q xp where xp = (dP
1 − eP

1 , . . . , dP
N − eP

N )T and σ2
Q =

1 + σ2

α
is the variance of the element of the estimated channel coeffi-

cient vector ĥ(t). Notice that the Effective SNR1 in (12) includes
the parameters α, through the channel estimation error, and β in its
expression; therefore, it reveals the underlying effects of pilot- and
data-power factors on the probability of detection error.

3.3. A Lower Bound on Channel Capacity

The received symbol matrix Y1(t) in (7) can be alternatively expressed
as follows,

Y1(t) = Ĥ(t)D(t) + (H(t) − Ĥ(t))D(t) + N1(t)︸ ︷︷ ︸
N

′
1(t)

, (13)

where Ĥ(t) is the channel estimate. The variance of the element of
N

′
1(t) can be computed by

σ2

N
′
1(t)

=
1

LrN
trace

{
E[N

′
1(t)N

′
1(t)

H ]
}

, (14)

where the factor LrN is the number of elements of N
′
1(t). Substitut-

ing N
′
1(t) into (14); and using the fact that trace

{
E[N1(t)N1(t)

H ]
}

=
σ2LrN

β
and the channel estimation error matrix H̃(t), the ST coded

data matrix D(t), and the noise matrix N1(t) are statistically indepen-
dent, σ2

N
′
1(t)

can be expressed as follows,
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σ2

N
′
1(t)

=
1

LrN
trace

{
E[H̃(t)HH̃(t)]E[D(t)D(t)H ]

}
+

σ2

β
, (15)

where H̃(t) = H(t) − Ĥ(t).
Referring to Theorem 1 in [4], E[D(t)D(t)H ] = I(Lt×Lt) is the

best in maximizing the mutual information of the ST coded MIMO
systems given Ĥ(t). This is equivalent to using the transmit anten-
nas independently with equal power, which is reasonable because no
channel knowledge is assumed to the transmitter. From (11), it can be

shown that trace
{

E[H̃(t)HH̃(t)]
}

= σ2LtLr
α

. Hence,

σ2

N
′
1(t)

=
σ2

N

(
Lt

α
+

N

β

)
. (16)

Let us define a normalized channel estimate H̄(t) = 1
σQ

Ĥ(t). By
using Theorem 1 in [4], the lower bound on channel capacity with the
worst case of uncorrelated additive noise can be described as follows,

CLt ≥ Cworst = E M−Lt
M

log

· det

⎛
⎜⎜⎜⎜⎜⎜⎝ILr×Lr +

N

σ2
· σ2

Q(
N
β

+ Lt
α

)
︸ ︷︷ ︸
Effective SNR2

H̄(t)H̄(t)H

⎞
⎟⎟⎟⎟⎟⎟⎠ (17)

where the bandwidth efficiency loss is taken into account by the factor
M−Lt

M
, resulting from the use of ILt×Lt as the pilot signal. It is worth

noticing that Effective SNR2 is similar to Effective SNR1

except a scaling factor. Therefore, maximizing these factors results
in minimizing the Chernoff’s upper bound on error probability while
maximizing the lower bound on channel capacity of the ST coded
MIMO systems employing the ML channel estimator. As a result,
these factors can be used as an objective function for an optimum
power allocation, because they can be optimized by the parameters
α and β.

4. OPTIMUM POWER ALLOCATION FOR
MAXIMUM-LIKELIHOOD CHANNEL ESTIMATION

In this section, we address the block power allocation problem in or-
der to optimally allocate the power to the data and the pilot parts. We
consider the case of the constant block power, where the power of the
pilot-embedded ST symbol matrix U(t) is constant. The normalized
block power allocated to the pilot-embedded ST symbol matrix U(t),
which is normalized by the transmit antenna numbers Lt, can be ex-
pressed as follows,

Ps =
E

[‖D(t)A‖2
]

Lt
+

E
[‖P‖2

]
Lt

= P
′
s + Pp = β + α, (18)

where P
′
s = β is the normalized block power allocated to the data part

and Pp = α is the normalized block power allocated to the pilot part.
The objective is to maximize Effective SNR1 with respect to

the pilot-power factor α subject to the constraints of constant block
power and acceptable Total MSE of the channel estimator. The accept-
able Total MSE is a threshold T that indicates the acceptable chan-
nel estimation accuracy for a reliable channel estimate, which in turn
yields good performance in term of probability of error. Substituting
β = Ps − α into Effective SNR1, the equivalent problem formu-
lation is given by

max
α

ln

(
(α + σ2)(Ps − α)

(N − Lt)α + PsLt

)
, (19)

where Total MSE ≤ T .
Differentiating (19) and equating the result to zero, we have the

optimum solution for the pilot-power factor α∗ as follows,

α∗ =

{
Ps−σ2

2
; N = Lt

PsLt−
√

PsN(PsLt+σ2(Lt−N))

(Lt−N)
; N �= Lt,

(20)

where the Total MSE in (11) must satisfy the following inequality

Total MSE =
σ2LtLr

α
≤ T. (21)

4.1. The Case of N = Lt

Substituting (20) into (21), we have the feasible range of SNR, i.e.
SNR = PsLt

σ2 , and the minimum optimum pilot-power factor α∗
min,

when MSE = T , as follows,

SNR ≥ Lt +
2L2

t Lr

T
and α∗

min =
LtLrPs

T + 2LtLr
. (22)

Accordingly, the range of the optimum pilot-power factor α∗ ob-
tained in (20), when the SNR satisfies the inequality in (22), is given
by LtLrPs

T + 2LtLr
≤ α∗ <

Ps

2
. (23)

However, there is a case when the SNR does not satisfy the in-
equality in (22); as a result, the Total MSE of the channel estimation
is not reliable and the probability of detection error is inevitably in-
creased. This scenario is equivalent to the low-SNR scenario, where
wireless communications are not reliable. According to the range of
the optimum pilot-power factor α∗ obtained in (23), we use the min-
imum value of α∗, e.g. α∗ = LtLrPs

T+2LtLr
, in this scenario because

Effective SNR1 is a monotonically increasing function of α, for α
within this range. In summary, we propose to determine the optimum
pilot-power factor α∗ for this case under different SNR scenarios as
follows,

α∗ =

{
LtLrPs

T+2LtLr
; SNR < Lt +

2L2
t Lr

T
Ps−σ2

2
; Otherwise.

(24)

4.2. The Case of N �= Lt

Substituting (20) into (21), we have the feasible range of SNR and the
minimum optimum pilot-power factor α∗

min as follows,

SNR −
√

N
Lt

√
SNR(SNR + (Lt − N)) ≥ LtLr(Lt−N)

T
,

(Lt − N)α∗
min +

√
PsN
LtLr

√
PsL2

t Lr + (Lt − N)Tα∗
min = PsLt.(25)

Accordingly, the range of the optimum pilot-power factor α∗ ob-
tained in (20), when the SNR satisfies the inequality in (25), is given
by

α∗
min ≤ α∗ ≤ Ps(Lt −

√
NLt)

(Lt − N)
. (26)

For the case that the SNR does not satisfy the inequality in (25), we
use the minimum value of α∗, i.e. α∗

min, for the same reason as in the
case of N = Lt. In summary, we propose to determine the optimum
pilot-power factor α∗ for this case under different SNR scenarios as
follows,

α∗ =

{
α∗

min; When the inequlity in (25) is not satisfied
PsLt−

√
PsN(PsLt+σ2(Lt−N))

(Lt−N)
; Otherwise.

(27)

In addition, the acceptable threshold T for the Total MSE of the
channel estimation is quite small and is determined by practice, e.g.
the simulation results in Section 5.

5. SIMULATION RESULTS

In this section, based on simulations, we examine the performances
of the ST coded MIMO systems employing the ML channel estimator
with four different power allocation strategies, including the optimum
power allocation, the unequal power allocation where α = 0.265 W
and β = 0.735 W, the unequal power allocation where α = 0.735 W
and β = 0.265 W, and the equal power allocation where α = β = 0.5
W. The total power of Ps=1 W/pilot-embedded ST symbol block is set.
The 3× 8 orthogonal STBC proposed in [2] is examined. The number
of transmit and receive antennas are Lt=3 and Lr=2, respectively, and
the number of data time slot per pilot-embedded ST symbol block is
N=11. QPSK modulation is employed in these experiments and the
acceptable threshold for the Total MSE of the channel estimation is 3,
which yields α∗

min of 0.265 W. In addition, quasi-static flat Rayleigh
fading channels are investigated in these experiments. For the case of
N = Lt, please refer to the experiments in [5].

In Fig.1, the patterns of powers allocated to pilot and data parts
using different power allocation strategies are illustrated. It is worth
noticing that the patterns of power for the optimum power allocation
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Fig. 1. the patterns of power allocated to pilot and data parts for dif-
ferent power allocation strategies.
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Fig. 2. The graph of BERs of the ST coded MIMO systems employing
the ML channel estimator with different power allocation strategies.

strategy saturate at certain levels, e.g. α ≈ 0.38 W and β ≈ 0.62 W,
in high SNR regimes.

In Fig.2, the graph of BERs of the ST coded MIMO systems em-
ploying the ML channel estimator with different power allocation strate-
gies are depicted. It is obvious that the optimum power allocation
strategy yields the lowest bit error rate (BER), where the SNR dif-
ference of 2.2 dB is observed at BER of 10−4 compared with the ideal
channel case, where the true channel is employed in the receiver. It is
worth noticing that the equal power allocation and the unequal power
allocation where α = 0.265 W and β = 0.735 W yield the same
BER whereas the unequal power allocation where α = 0.735 W and
β = 0.265 W is the worst, where SNR differences of 0.6 dB and 3
dB, respectively, are observed at BER of 10−4 compared with the op-
timum one. This results indicate that the good BER results from the
proper power allocation strategies taking into account both of MSE
of channel estimation and error probability. It is also worth noticing
that the unequal power allocation strategy with more power constantly
allocated to the data part provides a much better BER than the op-
posite one. In addition, if no information about the SNR is available
to the transmitter, the equal power allocation can be reasonably used
as a suboptimum approach with the acceptable performance degrada-
tion. In fact, the unequal power allocation where α = 0.735 W and
β = 0.265 W does provides the lowest MSE of channel estimation,
however, this enhanced MSE does not result in the lowest probability
of detection error. Since the total power is fixed, the more power allo-
cated to the pilot part, the smaller remaining power is available for the
data part. This power tradeoff results in error probability performance
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Fig. 3. The graph of lower bounds on channel capacity of the ST coded
MIMO systems employing the ML channel estimator with different
power allocation strategies.

degradation. Hence, the joint MSE and error probability optimization
is an ultimate goal of such systems.

In Fig.3, the graph of the lower bounds on channel capacity when
using different power allocation strategies are depicted. It is obvious
that the optimum power allocation yields the highest lower bound on
channel capacity whereas the unequal power allocation where α =
0.735 W and β = 0.265 W is the worst. The same argument can
be drawn in a similar way to Fig.2, where the reasonable suboptimal
approach is the equal power allocation.

6. CONCLUSION

In this paper, we have proposed and unified the optimum power al-
location for the ML channel estimation in ST coded MIMO systems
based on jointly optimizing the Chernoff’s upper bound on error prob-
ability and the lower bound on channel capacity. We have noted that
these two bounds share the common effective SNR factor, thus, result
in the same optimum power allocation strategy. Experimental results
indicate that the proposed power allocation scheme yields a better per-
formance in terms of bit error rate, while the unequal power alloca-
tion with more power constantly allocated to the pilot part performs
the worst. Meanwhile, the equal power allocation and the unequal
power allocation with more power constantly allocated to the data part
yield close performance, where an SNR difference of 0.6 dB at BER of
10−4 compared with the optimum approach is observed. These results
suggest that the equal power allocation can be reasonably used as the
suboptimum approach when the optimum approach is not available.
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