
EXACT MAP DECODING OF CABAC ENCODED DATA

Salma Ben Jamaa, Michel Kieffer and Pierre Duhamel

LSS – CNRS – Supélec – Université Paris-Sud XI
Plateau de Moulon, 91192 Gif-sur-Yvette, France

ABSTRACT
This paper presents a MAP estimator for CABAC encoded data
transmitted through a noisy channel. The decoding process has
two characteristics (i) it provides an exact result, without ap-
proximation (ii) it is compatible with realistic implementations
of CABAC in standards like H.264, i.e, taking into account
finite precision problems and handling adaptive probabilities
and context modeling. Simulation results outline the efficiency
of the proposed method when applied in AWGN and UMTS-
OFDM frameworks.1

I. INTRODUCTION

An increasing number of applications require data trans-
mission through noisy packet-switched channels, e.g., wireless
Internet. To overcome noise and packet loss problems, an
increasingly popular approach is joint source-channel decod-
ing (JSCD), which improves decoding performances while
keeping efficient data compression. A significant part of the
work in JSCD is related to the reliable decoding of variable
length codes (VLC), see, e.g., [1], [2].

Arithmetic Coding (AC) [3] is currently the object of a
growing interest as it yields higher compression efficiency
when compared to other compression methods. Context-based
Adaptive Binary Arithmetic Coding (CABAC) [4] is the en-
tropy coding method used, e.g., in H264/AVC. By combining
an adaptive binary encoding technique with context modeling,
an improved compression efficiency is achieved especially in
presence of non-stationary sources. However, this high com-
pression efficiency makes CABAC particularly vulnerable to
transmission errors. The error detection and correction are usu-
ally performed by introducing redundancy in the compressed
bitstream, thus reducing the compression efficiency. In [5], a
forbidden symbol (FS) is introduced in the coding alphabet,
used as an error detection device. This technique is coupled
with ARQ in [6]. In [7], both depth first and breadth first
decoding algorithms have been considered, and error detection
is again achieved by testing the presence of a FS during the de-
coding process. Sequential decoding with MAP estimation of
the encoded sequence is combined with the use of a FS in [8].
The AC decoder proposed in [9] estimates the state transitions
of a Markov process modeling the encoder. Redundancy is
introduced by considering a reduced precision AC and adding
synchronization markers into the transmitted bitstream.

1This work has been partly supported by the NEWCOM NoE

This work deals with the MAP estimation of H.264/AVC–
CABAC [4] encoded data. Its purpose is to provide an exact
MAP metric which is adapted to an actual CABAC imple-
mentation, i.e., a metric taking into account the delays due
to the CABAC encoder and decoder buffers. To obtain this
result, an estimator of the CABAC encoder state (observer) is
required at decoder. No extra redundancy is compulsory, only
that introduced during the binarization step of the CABAC is
exploited to detect errors. Our decoder performs better than
the one derived using the metric proposed in [8], [9], as their
metric would only be approximate on a realistic CABAC.
Note, however, that this exact computation is compatible with
existing ways of adding redundancy, and that combination of
both strategies would result in further improvements. However,
this is not the purpose of the paper.

II. CONTEXT OF THE WORK

Data are assumed to be compressed by a CABAC encoder,
packetized and transmitted over a mobile channel. Packets
undergo some alteration during the transmission. The purpose
is then to detect and correct transmission errors. As CABAC
handles only binary data, a binarization step consisting in
converting non binary source information into binary words
according to a binarization scheme [4] is needed. Soft esti-
mates are obtained from the output of the channel and fed to
the CABAC decoder, see Figure 1.

Fig. 1. Transmission scheme

The K bins sequence denoted by SK
1 = {S1, ..., SK}

consists of a succession of binarized source symbols belong-
ing to the set C (bins stand for bits obtained by a bina-
rization process). The last binarized source symbol of SK

1 ,
EOS, indicates the end of the binarized stream. Let XN

1 =
{X1, ..., XN} be the succession of CABAC output bits, as-
sumed to be transmitted within a single channel packet, and
let Y N

1 = {Y1, ..., YN} be the corresponding channel output.

IV  569142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



Only N is supposed to be known at the decoder side. Capital
letters are for random variables, and small letters for their
values. Integers n and k denote respectively the current length
of the channel input bitstream, and the current number of
decoded bins.

II-A. Basic principles of binary arithmetic coding (BAC)

Basic principles of BAC are explained in [10] and recalled
here. At each iteration, a subinterval of [0, 1) is iteratively
constructed. The current interval [low, low + range) is di-
vided into two subintervals, the size of which is proportional
to the probabilities of the source bins 0 and 1 and one of these
intervals is selected, depending on the value of the current bin.
Once the last bin of EOS is encoded, the algorithm computes
the real value V , belonging to the obtained interval which can
be represented by the minimum number of bits. The binary
representation of V forms the code string. Based on V , the
decoder is able to recover the source bin stream.

For sources with unbalanced bin probabilities, and for long
source sequences, subintervals may get too small to be accu-
rately handled by a finite precision processor. This problem is
solved with finite precision BAC.

II-B. Practical implementations of BAC

To overcome the precision problem, most AC encoders are
implemented using integers [4]. Since this process is of interest
in our implementation, the corresponding algorithm is recalled
below.

The interval [0, 1) of reals is replaced by the interval [0, 2p)
of integers, where p is the bit-size of low and range. Each
time a division and selection has been performed, one checks
whether range is smaller than the quarter of [0, 2p). If it
is the case, renormalization, consisting in doubling low and
range, is performed and some encoded bits may be output.
If the current interval (before renormalization) overlaps the
midpoint of [0, 2p), no bit is output. The number of times
low and range have been doubled without outputting encoded
bits is stored in the follow variable. If the current interval
(before renormalization) entirely lies in the upper or lower half
of [0, 2p), the encoder emits the leading bit of low (0 or 1)
and follow opposite bits (1 or 0). This is called the follow-on
procedure [11].

At decoding side, a p bits buffer value formed by the last p
received bits is used to determine the divisions and selections
of [0, 2p) which have been performed at encoder side. These
operations clearly characterize the source bin stream. Each
time a renormalization is performed, new bits are shifted into
value without outputting any estimate of the source bins.
Moreover decoding starts only after an initialization consisting
in loading p bits into value; again no source bin is output
during initialization.

In the context-based BAC, interval divisions are made ac-
cording to bins probabilities deduced from contexts. Selection
depends on whether the current bin is the most probable (MPS)
or the least probable (LPS) one. The context information
(probabilities, value of the MPS) is updated each time a bin has

been encoded. Encoding and decoding complexity is reduced
by using a set of precomputed discrete values of subinterval
lengths, as performed within the Q coder [4].

III. MAP DECODER

Assume that for a given n, xn
1 fed to the decoder results in

sk
1 at its output. The MAP estimator proposed by [9] and [8]

consists in evaluating

ŝk
1 = argmax

sk
1

P
(
Sk

1 = sk
1 |Y n

1 = yn
1

)
(1)

= argmax
sk
1

P
(
Sk

1 = sk
1

)
P

(
Y n

1 = yn
1 |Sk

1 = sk
1

)
P (Y n

1 = yn
1 )

.

The difficulty in using this last formula lies in the evaluation
of P

(
Y n

1 = yn
1 |Sk

1 = sk
1

)
. In the above referenced papers,

this difficulty is circumvented by approximating this quantity
by P (Y n

1 = yn
1 |Xn

1 = xn
1 ) . This corresponds to implicitly

assuming that P (Sk
1 = sk

1 |Xn
1 = x̃n

1 ) = 0 for any x̃n
1 �= xn

1 ,
i.e., assuming that xn

1 is the only bit sequence leading to sk
1 at

decoder output. However, as explained in Section II, the value
buffer introduces some decoding delay and several decoder
input subsequences may lead to the same output subsequence
sk
1 . Only when N is reached, a one to one mapping is ob-

tained by ensuring that the buffers are empty. This make the
former MAP estimate suboptimal within an actual CABAC
implementation. In [12], Sayir proposes a MAP estimation
of noisy arithmetic encoded data that has inspired this work,
though the decoding delay occurring at the CABAC decoder
is not taken into account. In our work, a different definition of
the MAP estimate is adopted. As will be shown, this requires
the estimation of the encoder state (low, range, follow, and
contexts) at the decoder side.

III-A. Definitions and assumptions

The aim is to determine at any n � N , the sequence x̂n
1

maximizing the a posteriori probability (APP)

P (Xn
1 = xn

1 |Y n
1 = yn

1 ), (2)

which will be written as P (xn
1 |yn

1 ) to make notations shorter.
The evaluation of (2) has account for the fact that xn

1 is the out-
put of a CABAC encoder fed with binarized source symbols.
Once N is reached, x̂N

1 , maximizing (2), may be decoded as
ŝK
1 satisfying all constraints imposed by the binarization. As

there is a one to one mapping between x̂N
1 and ŝK

1 , ŝK
1 max-

imizes (1). Using (1) or (2) with an optimal decoder would
lead to the same final result, however, as optimal decoding
is usually unfeasible, the evaluation of (2) is more accurate
with iterative decoders of noisy data encoded with a realistic
CABAC.

The decoder input sequence xn
1 may be decomposed in three

parts. First, x
n′(sk

1)
1 are the bits that would (in any case, with

any value taken by the rest of the sequence) be output by an

encoder fed with sk
1 . The second part x

n′(sk
1)+F (sk

1 )

n′(sk
1)+1

are the

postponed bits [12], which may only take values {1, 0, . . . , 0}
or {0, 1, . . . , 1}, depending on the coder internal state (low,

IV  570



range, follow, contexts) after being fed with sk
1 . The last

part, xn
n′(sk

1 )+F (sk
1)+1

, are bits assumed independent of sk
1 .

Here, F (sk
1) is chosen equal to follow + 1, keeping in mind

that follow depends on sk
1 . As n′(sk

1), F (sk
1), low, range

and the contexts are not directly available at the decoder, a
possible way to estimate these quantities is to reencode sk

1 .
This additional encoder is called observer to avoid confusion,
see Figure 1. In the remainder of the paper, the notations
n′(sk

1) = n′ and F (sk
1) = F are adopted.

We assume that the channel is memoryless and that Xn′
1 ,

Xn′+F
n′+1 , and Xn

n′+F+1 are independent. As a consequence, it

is also the case for Y n′
1 , Y n′+F

n′+1 , and Y n
n′+F+1.

III-B. Derivation of the APP

Since sk
1 is fully determined by xn

1 at the decoder side and
since sk

1 yields xn′
1 at the observer side, one can easily prove

that

P (Xn
1 = xn

1 ) = P (Sk
1 = sk

1 , Xn
n′+1 = xn

n′+1). (3)

Using (3), the APP can be expressed as

P (xn
1 |yn

1 ) =
P (sk

1)P (xn
n′+1|sk

1)
P (yn

1 )
P (yn

1 |sk
1 , xn

n′+1). (4)

Using the decomposition of xn
1 presented in Section III-A and

the independence between Xn
n′+F+1 and Sk

1 , one may write

P
(
xn

n′+1|sk
1

)
= P (xn′+F

n′+1 , xn
n′+F+1|sk

1)

= P (xn′+F
n′+1 |sk

1)P (xn
n′+F+1). (5)

Using again (3), the last term in (4) may be written as

P (yn
1 |sk

1 , xn
n′+1) = P (yn

1 |xn
1 ). (6)

Then, combining (4) and (6) and using (5), the APP becomes

P (xn
1 |yn

1 ) =
P

(
sk
1

)
P (yn

1 |xn
1 )

P (yn
1 )

P (xn
n′+F+1)P (xn′+F

n′+1 |sk
1).

(7)
By observing (7), it appears that the metric obtained in

[8], [9] is part of our result. Two additional terms are in-
volved; P (xn

n′+F+1) and P (xn′+F
n′+1 |sk

1), which evaluation is
described in the next section. The other quantities are esti-
mated as in [8].

III-C. Practical implementation of the MAP estimator

To evaluate P (xn
n′+F+1), we assume that all sequences

xn
n′+F+1 have equal a priori probability, i.e., P (xn

n′+F+1) =
2−n+(n′+F+1). If a different information is available (iterative
decoding, for example), it may obviously be used.

The evaluation of P (xn′+F
n′+1 |sk

1) requires more care. More

bins sk′
k+1 are necessary to perfectly determine xn′+F

n′+1 at the

observer. A possible way to estimate P (xn′+F
n′+1 |sk

1) is to write
this quantity as

P (xn′+F
n′+1 |sk

1) =
∑

sk′
k+1

P
(
sk′

k+1|sk
1

)
P (xn′+F

n′+1 |sk′
k+1, s

k
1),

which requires to feed the observer with all possible sk′
k+1

until a follow-on procedure is performed. This procedure has
a combinatorial complexity. Here, the procedure for a single
additional bin sk+1 is described, its generalization is straight-
forward. Two cases have to be considered Sk+1 = MPS and
Sk+1 = LPS. Thus,

P (xn′+F
n′+1 |sk

1) = PMPSP (xn′+F
n′+1 |sk+1 = MPS, sk

1)

+ PLPSP (xn′+F
n′+1 |sk+1 = LPS, sk

1),

where PMPS = P (Sk+1 = MPS|sk
1) and PLPS = P (Sk+1 =

LPS|sk
1) are deduced from the binarization scheme and the

contexts estimated at the observer. If postponed bits are emit-
ted, their values may be either {0, 1, . . . , 1} or {1, 0, . . . , 0}.
If xn′+F

n′+1 is not equal to one of these two sequences,

P (xn′+F
n′+1 |sk

1) = 0. Now, if xn′+F
n′+1 is equal to one of them,

and
- only an MPS produces xn′+F

n′+1 then P (xn′+F
n′+1 |sk

1) = PMPS,

- only an LPS produces xn′+F
n′+1 then P (xn′+F

n′+1 |sk
1) = PLPS,

- both MPS and LPS produce xn′+F
n′+1 then P (xn′+F

n′+1 |sk
1) = 1.

In all other cases, it is assumed that P (xn′+F
n′+1 |sk

1) = 1
2 .

Practical implementations could fed the observer with more
than a single bit to improve the evaluation of P (xn′+F

n′+1 |sk
1). In

practical situations, however, satisfactory results are obtained
with less than 3 additional bits, and the additional complexity
remains limited.

IV. SIMULATIONS

Simulation are performed using the CABAC taken from
the H.264. Binarized source codewords belong to the first
8 binary codewords of the zero-order Exp-Golomb scheme
(EG0) [4]. A simplified context modeling with three contexts is
considered. Simulations using AWGN channel and Pedestrian-
B UMTS soft error patterns, see, e.g., [13] are considered.
For AWGN channel, no channel coding is used and error
correction relies only on the redundancy due to the binarization
scheme. For the Pedestrian-B channel, the CABAC is followed
by a rate 1/2 convolutionnal code with constraint length 9
and generators (561, 753)o. A standard UMTS interleaver
of length 640 is also considered. At the channel output, a
SOVA decoder is implemented, providing log-likelihood ratios
(LLRn). In both cases, a sequential M-algorithm [14] explores
and stores the M best estimates of Xn

1 in terms of APP (2).
The Symbol Error Sate (SER) is evaluated for different values
of the SNR, symbols being the binarized source words. When
the correct path is lost by the M-algorithm, the decoder may
not output any solution and all symbols emitted by the source
are considered as erroneous, and counted in the SER. Hard
decoding provides the bit value xn from the sign of channel
output yn in the AWGN case, and of the LLRn in the UMTS
case. Hard decoding fails if debinarization fails or if the EOS
is not decoded from this bit stream.

Figure 2 compares the results obtained using the proposed
MAP and the metric proposed by [8]. Packets of 640 bits,
containing sequences involving many follow-on procedures

IV  571



during encoding, are transmitted over an AWGN channel. A
M-algorithm with M = 10 is used for decoding. For a SER of
10−3, an improvement of 0.6 dB is achieved.

Fig. 2. Performances of the proposed MAP vs. the MAP
proposed in [8]

Figure 3 illustrates the results obtained using packets of 640
bits and the M-algorithm with M = 20. Performances of a
MAP decoder using (2) are compared to those obtained using
a Maximum-Likelihood (ML) decoder. For a SER of 10−3,
the improvement (in dB) obtained when using (2), compared
to the ML metric is around 0.7 dB for both channels. The gain
achieved by the soft decoding when compared to the hard one
is up to 4 dB in the AWGN channel and 2 dB in the Pedestrian-
B channel.

Fig. 3. MAP performances vs. hard and ML decoding for AWGN
channel (without channel coding), and UMTS-OFDM channel
(with convolutional coding).

Note, however that our purpose in this section is to empha-
size that, despite the fact that the approximation used in the
previous works is often quite accurate, exact computation may
lead to improved decoding in some situations. We must clearly
express that, on many sequences, both computations provided
almost the same performance, but that on some of them the
phenomenon shown on the Figure 2 was observed. This clearly

illustrates the usefulness of using an exact computation rather
than an approximate one.

V. CONCLUSIONS

This paper, has presented a soft decoding technique based
on a MAP estimation exploiting the a priori knowledge about
the encoding process, the source statistics, and the channel
noise. The proposed decoder is able to handle adaptive proba-
bilities and context modeling, and is compatible with standard
implementation of CABAC without changing its compression
efficiency. Current work is dedicated to embedding the soft
MAP decoder within the H.264 decoder.

VI. REFERENCES
[1] M. Park and D. J. Miller, “Joint source-channel decoding

for variable length encoded data by exact and approximate
map sequence estimation,” IEEE Trans. on Comm., vol.
48(1), pp. 1–6, 2000.

[2] K. Sayood, H. H. Otu, and N. Demir, “Joint source-channel
coding for variable length codes,” IEEE Trans. on Comm.,
vol. 48(5), pp. 787–794, 2000.

[3] P. G. Howard and J. S. Vitter, “Practical implementations
of arithmetic coding,” Image and Text Compression, vol.
13(7), pp. 85–112, 1992.

[4] D. Marpe, H. Schwarz, and T Weigand, “Context based
adaptative binary arithmetic coding in the h.264/avc video
compression standard,” IEEE Trans. on Circuits and Sys-
tems for Video Technology, vol. 13(7), pp. 620–636, July
2003.

[5] C. Boyd, J. Cleary, I. Irvine, I. Rinsma-Melchert, and I. Wit-
ten, “Integrating error detection into arithmetic coding,”
IEEE Trans. on Comm., vol. 45(1), pp. 1–3, 1997.

[6] J. Chou and K. Ramchandran, “Arithmetic coding-based
continuous error detection for efficient arq-based image
transmission,” IEEE Trans. on Comm., vol. 18(6), pp. 861–
867, 2000.

[7] B. D. Pettijohn, M. W. Hoffman, and K Sayood, “Joint
source/channel coding using arithmetic codes,” IEEE Trans.
on Comm., vol. 49(5), pp. 826–836, 2001.

[8] M. Grangetto, P. Cosman, and G. Olmo, “Joint
source/channel coding and map decoding of arithmetic
codes,” IEEE Trans. on Comm., pp. 1007–1015, 2005.

[9] T. Guionnet and C. Guillemot, “Soft decoding and syn-
chronization of arithmetic codes: Application to image
transmission over noisy channels,” IEEE Trans. on Image
Processing, vol. 12(12), pp. 1599–1609, 2003.

[10] P. Elias, “Universal codeword sets and representations of
the integers,” IEEE Trans. on Information Theory, vol. 6(3),
pp. 194–203, 1975.

[11] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic
coding for data compression,” Comm. of the ACM, vol. 30,
pp. 520–540, 1987.

[12] J. Sayir, On Coding by Probability Transformation, PhD
Thesis Nr. 13099, EE Department, ETH Zrich, Switzerland,
1999.

[13] M. Jeanne, I. Siaud, O. Seller, and P. Siohan, “Application of
a joint source-channel decoding technique to umts channel
codes and ofdm modulation,” Proc. of ICT, Fortaleza,
Brazil, pp. 912–923, 2004.

[14] J. B. Anderson and S. Mohan, Source and channel coding:
an algorithmic approach, Kluwer Academic Publishers,
Norwell, Massachussetts, 1991.

IV  572


