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ABSTRACT
We are interested in studying different capacity formulations in lin-
ear vector Gaussian channels where the transmitter is only informed
with the magnitude of the complex channel matrix coefficients and
the receiver has perfect channel knowledge. Initially, we give the
general expressions for the ergodic, compound, and outage capaci-
ties for our particular model of channel state information. Next, fo-
cusing on the compound formulation, we find that the optimal trans-
mitter strategy consists in independent signaling through the transmit
dimensions. Finally, we present a new result on the power allocation
for the maximization of the outage mutual information.

1. INTRODUCTION

It is well known [1], that the capacity achieving signaling strategy
for linear vector Gaussian channels consists in transmitting random
Gaussian vectors with zero mean. Consequently, the only remaining
degree of freedom to optimize the mutual information is through
the covariance matrix of these vectors. The optimal design of the
covariance matrix depends, to a large extent, on the model utilized
to characterize the channel.

On one hand, many authors consider the linear vector channel
as a stochastic matrix, whose entries are commonly modeled as cir-
cularly symmetric complex Gaussian random variables, with a given
mean and covariance. Within this context, two different kind of ap-
proaches can be considered depending on the time-varying charac-
teristics of the channel. If the channel fluctuations are fast enough
so that, during the transmission of a message, its long term average
properties are unveiled, then the optimal covariance design aims at
maximizing the ergodic mutual information, because it is the mea-
sure that controls the rate at which reliable communication is possi-
ble [2]. On the contrary, in a slow fading scenario, the maximum rate
achievable with a certain probability is dictated by the outage mutual
information [3], and thus the covariance matrix should be optimized
according to this criterion.

On the other hand, much attention is recently being paid to mod-
els that describe the channel assuming that it is a deterministic (thus
fixed) quantity belonging to a certain set, which takes into account
the possible effects of lack of knowledge about the channel state that
the transmitter may be experiencing. Within this framework, the de-
sign of the covariance matrix is focused at maximizing the worst
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case mutual information, whose supremum is defined in [4] as the
compound capacity.

Concerning the stochastic models for the channel, the ergodic
capacity of multiantenna systems with partial channel state informa-
tion at the transmitter side has been studied, for example, in [5] and
[6], in which a single receiver architecture is considered, and it is as-
sumed that the transmitter has access only to either the mean value or
the covariance of the channel vector. In the latter case, capacity can
be achieved by a covariance matrix that has the same eigenvectors
as the true channel covariance matrix. The outage formulation has
been largely less studied. In [2], it was conjectured that for Rayleigh
channels the optimal strategy consists in performing uniform power
allocation among a subset of the transmit dimensions. More recently,
the outage capacity has been studied in [7] for the case of a single re-
ceive dimension. As far as the compound capacity is concerned, the
optimality of the uniform power allocation scheme has been proven
in [8] using game-theoretic justifications under a mild assumption
on the channel isotropy. In addition, in [9] the authors proved that
beamforming maximizes the compound capacity in rank one Ricean
linear vector Gaussian channels. For the sake of completeness, see
further [10] for a tutorial on capacity under different assumptions of
the knowledge at the transmitter side.

In this work, we study the ergodic, compound and outage capac-
ity formulations for the particular model of incomplete knowledge
of the channel matrix at the transmitting end that was presented in
[11, 12], where the transmitter is only informed of (or is only able
to estimate accurately) the magnitude of the channel coefficients and
lacks of information about the corresponding channel phases. The
receiver is assumed to have perfect channel knowledge.

2. SYSTEM MODEL

We consider a linear vector Gaussian channel with nT transmit and
nR receive dimensions. Let us define x ∈ CnT as the transmit signal
vector, H ∈ CnR×nT , as the channel matrix, and n ∈ CnR , as the
noise vector, modeled as a circularly symmetric Gaussian distributed
random vector with zero mean and covariance matrix Enn† = σ2I.
The received signal, y ∈ CnR , for this model can be expressed as

y = Hx + n = [h1h2 · · ·hnT ]x + n. (1)

As it was stated in the introduction, we assume that, while H is
perfectly known at the receiver, the transmitter only has access to
the magnitude of the entries of H. To separate the known from the
unknown part of the elements of H, we define

H ≡ M� P,
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where � denotes the Hadamard element-wise matrix product. In
this model, the magnitude information of the complex entries of H is
stored in M, and the coefficients of P contain the phase information,
i.e., [P]kl = ei[Θ]kl . Following the notation introduced above, the
gain between the l-th transmit and the k-th receive dimensions is
[H]kl = [M]klei[Θ]kl , with [M]kl ≥ 0, ∀k, l. Whenever necessary,
the unknown channel phases, [Θ]kl, are modeled as i.i.d. uniform
random variables in the interval [−π, π) as suggested in, e.g, [13].

The capacity achieving strategy in linear vector Gaussian chan-
nels is signaling using random Gaussian vectors [1]. In this case,
the mutual information for a fixed transmit covariance matrix and
channel state is [2]

Ψ(Q,M,P) = log det
�
I + σ−2(M � P)Q(M � P)†

�
, (2)

where the transmitted power is given by Ex†x = TrQ = P . In
the following subsections, we particularize the definitions of ergodic,
compound, and outage mutual information for the uncertainty model
considered in this work, explain in which situations do these mea-
sures become meaningful, and give some previous known results.

2.1. Ergodic Mutual Information

The ergodic mutual information is defined in, e.g., [10] as the expec-
tation, with respect to the channel state uncertainty, of the mutual
information expression in (2). In our case, it particularizes to

IE(Q,M) = EPΨ(Q,M,P). (3)

The ergodic mutual information is a meaningful measure of the
achievable rates in situations where, during the transmission of the
message, the magnitude of the channel matrix, M, remains constant
while the channel phases, P, vary sufficiently fast so that its long-
term ergodic properties are revealed. This model would fit, e.g., in a
communication situation with direct line of sight, where the mobile
user is moving slowly. In this scenario, while the magnitude of the
entries of M would not change in an appreciable way (assuming
plane waves propagation), the phases in P would vary very rapidly
because of the relative movement.

The ergodic capacity, defined as the supremum of the ergodic
mutual information with respect to the set of possible covariance
matrices, subject to a mean transmitted power constraint, was found
in [11] for this particular model of channel uncertainty as

CE = sup
Λ

IE(Λ, M)

s. t. TrΛ ≤ P, Λ � 0,
(4)

where Λ is a diagonal matrix. The optimal power allocation, i.e., the
entries of Λ, were also found in [11] for a 2 × 2 channel case.

2.2. Compound Mutual Information

The compound mutual information is defined [4] as the infimum,
with respect to the channel state uncertainty, of the mutual informa-
tion expression in (2). In our case, it particularizes to

IC(Q, M) = inf
P∈P

Ψ(Q,M,P), (5)

where P ≡ �
X ∈ CnR×nT | |[X]ij | = 1

�
defines the set of all

possible channel phases compatible with the incomplete knowledge
about H. Noticeworthy, the compound mutual information does not
depend on the statistical properties of the uncertainty in the channel,
because it only considers the worst-case scenario.

The compound mutual information is a measure of the worst-
case achievable rates in situations where no significant channel vari-
ability may occur during the transmission of the message and the
transmitter is only informed of (or is only able to estimate accu-
rately) the magnitude matrix M. This may be the case of a static
communication between the transmitter and the receiver, or when
communicating in a slow fading environment.

In Section 3 we give the structure of the covariance matrix that
maximizes the compound mutual information, for our particular case
of channel knowledge, which turns out to be a diagonal structure.
In [12], the authors imposed a diagonal structure on the covariance
matrix, and found the optimal power allocation for the compound
mutual information, for the case of a 2 × nR channel and also for
a general nT × nR channel configuration in the low signal-to-noise
ratio (SNR) regime.

2.3. Outage Capacity

The outage mutual information [3] is the maximum rate, R, such
that the probability that the mutual information in (2) be below R is
less or equal than ε as expressed in (6).

Iε
O(Q, M) = sup

R
{R|Pr (Ψ(Q,M,P) ≤ R) ≤ ε} , (6)

where the probability is with respect to the distribution of the channel
phases in P. The outage mutual information can be technologically
relevant in static scenarios, or when the channel fluctuations are slow
enough so that the channel can be considered fixed1 during the trans-
mission of the message. From its expression in (6), we can see that
the outage mutual information can be directly related to the achiev-
able rate that can be guaranteed with a certain probability, which is
given by 1 − ε.

The outage capacity problem can be stated from two different
approaches, which are essentially equivalent. The problem is to
find the optimal covariance matrix to, on one hand, given an out-
age probability, obtain the corresponding maximum rate; or, on the
other hand, given a target rate, obtain its associated minimum out-
age probability. Considering the latter point of view, for a target
rate Cout, which may depend on P and σ2, we obtain the following
problem formulation for the minimum outage probability εmin,

εmin(Cout) = inf
Q

Pr
�
Ψ(Q,M,P) ≤ Cout

�
P, σ2��

s. t. TrQ ≤ P, Q � 0.
(7)

Unfortunately, for the outage formulation no results are known for
our channel uncertainty model. In Section 4 we impose a diagonal
structure to the covariance matrix Q in (7) and find a solution, that
gives an upper bound on εmin.

3. OPTIMAL COVARIANCE MATRIX FOR THE
COMPOUND MUTUAL INFORMATION

The compound capacity of a linear vector Gaussian channel where
the transmitter has access only to the amplitude of the channel ma-
trix coefficients and has phase uncertainty is defined [4] as the con-
strained optimization of the compound mutual information in (5)
with respect to the covariance matrix Q, i.e.,

CC(M) = sup
Q

IC(Q, M)

s. t. TrQ ≤ P, Q � 0.
(8)

1The channel is considered fixed, but the transmitter has only partial (or
no) knowledge of the channel state matrix.
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We are interested in finding the structure of the covariance matrix Q
that is the solution to the problem in (8). To accomplish this purpose,
we first present the following lemmas.

Lemma 1. Let Jn ∈ ZnT ×nT be a diagonal matrix such that its
non-zero entries satisfy [Jn]ii ∈ {1,−1}, ∀i. There are L = 2nT

different such matrices which are indexed from n = 1 to n = L. It
then follows that

Λ =
1

L

L�
n=1

JnQJn (9)

is a diagonal matrix such that [Λ]ii = [Q]ii , ∀Q ∈ CnT ×nT .

Lemma 2. The function IC(Q,M) is invariant under the transfor-
mation Q �→ JnQJn, ∀n, where the definition of Jn is the same as
in Lemma 1.

Proof. We begin by noticing that

(M � P)JnQJn(M �P)† = (M� �P)Q(M � �P)†, (10)

where we have introduced the following change of variables

[�P]ij =

�
[�P]ij if [Jn]jj = 1

[�P]ij eiπ if [Jn]jj = −1
.

Notice that P ∈ P ⇒ �P ∈ P . In (11), we perform the transforma-
tion Q �→ JnQJn on IC(Q,M) and show that it remains invariant.

IC(Q,M) �→ IC(JnQJn,M) =

= inf
P∈P

log det
�
I + (M � P)JnQJn(M �P)†

�
= inf

�P∈P
log det

�
I + (M � �P)Q(M � �P)†

�
= IC(Q,M),

(11)

where last equality follows from the fact that �P is a dummy mini-
mization variable.

Lemma 3. The function IC(Q,M) is strictly concave in Q, where
Q belongs to the set of positive semidefinite matrices.

Proof. The function IC(Q, M) is defined in (5) as the pointwise
infimum, with respect to P ∈ P , of a set of strictly concave func-
tions in Q. Consequently, from [14, p. 81], IC(Q, M) is also strictly
concave.

In the following proposition, we find the structure of the covari-
ance matrix that is the solution to the problem in (8).

Proposition 1. The compound capacity of a linear vector Gaussian
channel, where the receiver has perfect channel state information
and the transmitter is only informed with the amplitude of the chan-
nel complex coefficients, can be achieved by (and only by) a Gaus-
sian codebook with a diagonal covariance matrix.

Proof. To prove achievability we only need to show that

IC(Q,M) =

L�
n=1

1

L
IC(Q,M) (12)

=
L�

n=1

1

L
IC(JnQJn,M) (13)

≤ IC

�
1

L

L�
n=1

JnQJn,M

�
(14)

= IC(Λ,M), (15)

where Λ is a diagonal matrix such that TrΛ = TrQ. Note that (13)
follows from Lemma 2; inequality (14), from Lemma 3; and, finally,
we invoked Lemma 1 to write (15). It is now straightforward to see
that, if Q is a solution of the optimization problem in (8), then there
exists a diagonal matrix Λ that is also optimal or, formally,

sup
Q

IC(Q,M) ≤ sup
Λ

IC(Λ,M),

where Λ is a diagonal matrix such that TrΛ = TrQ.

Proof. To prove the converse we use a similar argument as in [15].
Since IC(Q, M) is strictly concave in Q it has a unique global max-
imum, Q�. From Lemma 2, we deduce that, for Q� to be unique, it
has to satisfy Q� = JnQ�Jn, ∀n, which implies that Q� has to be
diagonal.

Interestingly, the result in Proposition 1 for the compound case
also holds for the ergodic case. It can be shown just by replacing
IC(Q,M) by IE(Q,M) in the formulation presented above. No-
tice that the lemmas that we used in the derivation are also valid for
the ergodic mutual information, however, we do not give the proofs
here because the optimality of a diagonal covariance matrix for the
ergodic capacity case was already proved in [11]. Unfortunately, the
same result does not apply for the outage capacity because the ob-
jective function in (7), is not concave in Q and consequently Lemma
3 is not valid for the outage formulation.

4. TWO TRANSMITTERS CASE

In this section, we consider the particular case where the transmit-
ting end is equipped with two antennas and the receiver collects the
incoming signal through a large number of antennas. In addition,
we consider that the 2 × 2 transmit covariance matrix is diagonal,
with entries λ1 and λ2, which, we recall, is optimal in the ergodic,
and compound formulations, but not necessarily in the outage case,
obtaining, thus, an upper bound on the minimum probability in (7).

Particularizing the expression in (2) for the 2 × nR case, with a
diagonal covariance we obtain

Ψ = log
�
(1 + λ1M1)(1 + λ2M2) − λ1λ2|M12|2

�
, (16)

where now λ1 + λ2 ≤ P/σ2 � γ and where M1 = ‖h1‖2, M2 =

‖h2‖2, and M12 = h†
1h2. We assume w.l.o.g. that M1 > M2 as the

opposite case is symmetric, and we would only need to interchange
the roles of λ1 and λ2. Notice that M12 is the only term in (16)
that depends on the channel phases. Consequently, if any λi = 0
then the mutual information in (16) becomes a deterministic quan-
tity. The pdf of M12 as a function of the amplitude of the channel
coefficients can be rather complicated to deal with, so we assume
that nR is large enough and approximate it for a Gaussian distribu-
tion.2 Thus, we obtain M12 ∼ CN �

0, ς2 =
�nR

i=1 |[H]i2[H]i1|2
�
.

Consequently, 2|M12|2/ς2 will be a χ2 random variable with two
degrees of freedom, and the expression in (16) can be very well ap-
proximated by

Ψ ≈ �Ψ = log

�
(1 + λ1M1)(1 + λ2M2) − λ1λ2ς

2

2
χ2

	
. (17)

Last equation is utilized to approximate the mutual information func-
tion in the ergodic (3) and outage (6) expressions, which are then
used as objective functions in the optimization problems (4) and (7),

2For practical purposes nR ≥ 8 is enough for the majority of cases.
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Fig. 1. Optimal power allocation for different criteria. In the case
of outage mutual information we have considered two cases Cout =
0.98Cmax(γ) and Cout = 0.9Cmax(γ), where Cmax is the supremum
with respect of λ1 and λ2 of the expression in (16) when M12 = 0.
Notice that, in this case, Cmax is a function of γ (mean SNR).

respectively. In each case, letting λ1 = λ, λ2 = γ − λ, a sin-
gle dimensional problem in λ is obtained. We highlight that in the
compound case, no approximation need to be done since the optimal
power allocation expression was found in [12] in exact closed form.

In the ergodic case, the problem in (4) has to be solved numer-
ically by a simple linear search in λ ∈ [0, γ]. Here, we give the
solution for the power allocation that maximizes the outage mutual
information problem expressed in (7).

If log(1 + γM1) > Cout, then the solution to the outage mu-
tual information is simply given by λ = γ, because in that case,
the expression in (16) is not a random variable any more and then
εmin(Cout) = 0, which is always a solution of (7). Otherwise, if
log(1 + γM1) ≤ Cout, then, defining ζ = eCout , the solution is

λ =
γM2 + 1 − ζ +

�
(1 − ζ + γM1) (1 − ζ + γM2)

M2 − M1
.

To see the differences among the solution of each power allo-
cation strategy, we have considered a 2 × 8 linear vector Gaussian
channel. In Fig. 1 we have plotted the obtained optimal power al-
location for the cases of ergodic, compound, and outage capacities.
Note that, as expected, as the SNR increases, the solutions of all
these three cases tend to the uniform power allocation, and, as the
SNR decreases, all of them tend to give no power to the worst an-
tenna (best and worst here is in terms of M1 ≶ M2). The other
remark of interest, is the moment, in terms of the SNR, where a par-
ticular strategy (ergodic, compound, or outage), begins to allocate
some power to the worst antenna, which we shall denote as γ0. For
the sake of space, we do not derive the expressions here, and just
give their expressions. They read as

γE
0 ≈ M1 − M2

M1M2
, γC

0 =
M1 − M2

M1M2 − M2
X

, γO
0 =

eCout(γ
O
0 ) − 1

M1
,

where MX =
�nT

i=1 |[H]i1[H]i2|. Clearly, γE
0 < γC

0 which agrees
with the results plotted in Fig. 1. In addition, notice that γO

0 has to be

solved iteratively, and that its value depends on the particular choice
of the function Cout(γ) (also in accordance with the plots in Fig. 1).

5. CONCLUSION

In this work, we have shown that, in a linear vector Gaussian channel
where the transmitter has only access to the magnitude of the chan-
nel matrix coefficients, the compound capacity can only be achieved
by independent Gaussian signaling through the transmit dimensions,
i.e., the optimal covariance matrix is diagonal.

With this result we have gone a step further to the full charac-
terization of the optimal covariance matrix, since the elements of the
diagonal of the covariance matrix were already calculated in [12]
for different channel configurations, but there, the diagonal structure
was imposed, without proving its optimality.

Finally, for the particular case of two transmitters, we have ob-
tained the resulting power allocations when maximizing the ergodic,
compound, and outage mutual informations, which, as we have seen,
become meaningful measures of the achievable rates depending on
the characteristics of the underlying communication scenario.
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