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ABSTRACT

The performance of a new detection algorithm for uncoded
multiple input-multiple output (MIMO) systems based on the
complex version of the sphere decoder (SD) is analyzed in
this paper. The algorithm performs a fixed number of ope-
rations to detect the signal, independent of the noise level.
Simulation results show that it can be applied to high-dimen-
sional MIMO systems presenting a very small bit error ratio
(BER) degradation compared to the original SD. In addition,
its deterministic nature makes it suitable for hardware imple-
mentation.

1. INTRODUCTION

The use of multiple input-multiple output (MIMO) techno-
logy has become the new frontier of wireless communica-
tions. It enables high-rate data transfers and improved link
quality through the use of multiple antennas at both trans-
mitter and receiver [1]. For spatially multiplexed uncoded
MIMO systems, the sphere decoder (SD) is widely consi-
dered the most promising approach to obtain optimal ma-
ximum likelihood (ML) performance with reduced comple-
xity [2],[3]. Although its average complexity is believed to be
polynomial [4], the actual complexity depends on the channel
conditions and the noise level. This makes it difficult to inte-
grate in an actual system where data needs to be processed at a
constant rate. In order to overcome this problem, a new fixed-
complexity sphere decoder (FSD) has been recently proposed
that provides quasi-ML performance [5]. In addition, it has
considerably lower complexity than the K-Best lattice de-
coder proposed in [6]. This paper analyzes the performance
and complexity of the FSD in high-dimensional MIMO sys-
tems showing that it is especially suited for integration into
next-generation wireless communication systems.

2. MIMO SYSTEM MODEL

The system model considered has M transmit and N receive
antennas, with N ≥ M , denoted as M × N . The transmit-
ted symbols are taken independently from a quadrature am-

plitude modulation (QAM) constellation of P points forming
an M -dimensional complex constellation C of PM vectors.
The received N -vector, using matrix notation, is given by

r = Hs + v (1)

where s = (s1, s2, ..., sM )T denotes the vector of transmit-
ted symbols with E[|si|

2] = 1/M , v = (v1, v2, ..., vN )T is
the vector of independent and identically distributed (i.i.d.)
complex Gaussian noise samples with variance σ2 = N0 and
r = (r1, r2, ..., rN )T is the vector of received symbols. H

denotes the M × N channel matrix where hij is the complex
transfer function from transmitter j to receiver i. The entries
of H are modelled as i.i.d. Rayleigh fading with E[|hij |

2] = 1
and are perfectly estimated at the receiver.

Since the elements of H are i.i.d. complex Gaussian, H

has full rank M and, therefore, the set {Hs} can be consi-
dered as the complex lattice Λ(H) generated by H. The FSD
is directly applied to the complex lattice so that it can be used
for complex constellations different from QAM in a similar
way to [7]. In addition, avoiding the more common real de-
composition would result in a more efficient hardware imple-
mentation as shown for the SD in [8].

3. FIXED-COMPLEXITY SPHERE DECODER (FSD)

The main idea behind the FSD is to perform a search over only
a fixed number of lattice vectors Hs, generated by a small
subset S ⊂ C, around the received vector r. The transmitted
vector s ∈ S with the smallest Euclidean distance is then
selected as the solution. The process can be written as

ŝfsd = arg{min
s∈S

‖r − Hs‖2} . (2)

Eq. (2) can also be written, after matrix decomposition
and removal of constant terms, as

ŝfsd = arg{min
s∈S

‖U(s − ŝ)‖2} (3)

where U is an M × M upper triangular matrix, with en-
tries denoted uij , obtained through Cholesky decomposition
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Fig. 1. Example of vectors s ∈ S in a 4×4 system with 4-
QAM modulation

of the Gram matrix G = H
H
H and ŝ = H

†
r is the uncon-

strained ML estimate of s where H
† = (HH

H)−1
H

H is the
pseudoinverse of H.

The (squared) Euclidean distance in (3) can be obtained
recursively starting from i = M and working backwards until
i = 1 using

Di = u2
ii|si − zi|

2 +

M∑

j=i+1

u2
jj |sj − zj |

2 = di + Di+1 (4)

where DM+1 = 0, D1 = ‖U(s − ŝ)‖2 and

zi = ŝi −

M∑

j=i+1

uij

uii

(sj − ŝj) . (5)

In (4), the term Di+1 can be seen as an accumulated (squared)
Euclidean distance down to level j = i + 1 and the term di

as the partial (squared) Euclidean distance contribution from
level i.

The subset of transmitted vectors S is determined defining
the number of points si, denoted as ni, that are considered
per level. In [5], it was shown that, in the SD, the number of
candidates considered per level during the tree search follow

E[nM ] ≥ E[nM−1] ≥ · · · ≥ E[n1] (6)

with 1 ≤ ni ≤ P . The FSD, therefore, assigns a fixed
number of points, ni, to be searched per level following (6).
This can be explained as follows: whereas in the first level,
i = M , more points need to be considered due to interference
from the other levels, the decision-feedback equalization per-
formed on zi reduces the number of points that need to be
considered in the last levels to approximate the ML solution.

The total number of vectors whose Euclidean distance is
calculated is, therefore, NS =

∏M

i=1
ni, where simulations

show that quasi-ML performance is achieved with NS �
PM , i.e. S is a very small subset of C [5]. The ni points
on each level i are selected according to increasing distance
to zi, following the Schnorr-Euchner (SE) enumeration [9].
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Fig. 2. Schematic of the FSD principle for the 2-dimensional
case - only the numbered dots inside the circle are searched

Fig. 1 shows a hypothetical subset S in 4×4 system with
4-QAM constellation where the number of points per level
nS = (n1, n2, n3, n4)

T = (1, 1, 2, 3)T . In each level i, the
ni closest points to zi are considered as components of the
subset S. In this case, the Euclidean distance of only NS =
6 transmitted vectors would be calculated, whereas the total
number of transmitted vectors 44 = 256 is much larger.

If S is large, the performance will be closer to that of the
original SD but the number of operations and, therefore, the
required computational resources or the processing time will
increase. That makes the FSD suitable for reconfigurable ar-
chitectures where the size of S can be made adaptive depen-
ding on the MIMO channel conditions.

Conceptually, the FSD is equivalent to a SD where, for
every MIMO symbol, the initial radius R is set to the ma-
ximum D1 distance among the NS values obtained. In this
case, the FSD achieves fixed-complexity by searching over
only NS points Hs inside the hypersphere so that the lattice
point of the ML solution Hŝml is included with high proba-
bility. Fig. 2 shows the basic principle of the FSD where the
dots represent the noiseless received constellation, the cross
represents the actual received point contaminated with noise
and only the numbered dots inside the hypersphere are con-
sidered as ML candidates (NS = 4).

3.1. FSD Preprocessing of the Channel Matrix

The preprocessing of the channel matrix in the FSD deter-
mines the detection order of the signals ŝi according to the
distribution of points nS used.

It orders iteratively the M columns of the channel matrix.
On the i-th iteration, considering only the signals still to be
detected, the signal ŝi with the smallest post-detection noise
amplification, as calculated in [10], is selected if ni < P .
If ni = P , the signal with the largest noise amplification is
selected instead.

The following heuristic supports this ordering approach:
if the maximum possible number of candidates, P , is searched
on one level, the robustness of the signal is not relevant to the
final performance, therefore, the signals that suffer the largest
noise amplification can be be detected on the levels where
ni = P .
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Fig. 3. BER performance of the FSD and the SD as a function
of the SNR per bit in a 4×4 system.

4. RESULTS

The performance and complexity of the FSD has been simu-
lated for different constellations and MIMO configurations.
The main aim is to evaluate its suitability for quasi-ML de-
tection in a fixed number of operations in systems where the
maximum likelihood detector (MLD) is unfeasible due to its
complexity. The results have been obtained simulating 20,000
channel realizations with 200 uncoded symbols transmitted
per channel realization.

Fig. 3 shows the bit error ratio (BER) performance of the
FSD as a function of the signal to noise ratio (SNR) per bit
in a 4×4 system compared to the ML performance provided
by the SD. The initial radius in the SD has been set accor-
ding to the noise variance per antenna and it is increased if no
point is found inside the hypersphere. The results have been
obtained for 4-,16- and 64-QAM modulation. The total num-
ber of points searched in the FSD is NS = P for a P -QAM
constellation following the distribution nS = (1, 1, 1, P )T .
Thus, all the possible P points are searched in the first level
(i = M ) and only the closest point to zi is considered for the
remaining levels. This distribution has the additional advan-
tage that the SE enumeration is not necessary, further simpli-
fying the receiver. The channel matrix has been ordered using
the FSD preprocessing, minimizing the BER for the selected
distribution of candidates nS .

It can be observed that the FSD gives practically ML per-
formance independent of the SNR, especially for larger con-
stellations, by calculating only P Euclidean distances. In par-
ticular, for 64-QAM modulation, only 64 Euclidean distances
are calculated, whereas the total number of distances to be
calculated by the MLD is much larger (644 = 16, 777, 216).
The performance curves for the K-Best lattice decoder have
not been included for clarity purposes. However, we have
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Fig. 4. BER performance of the FSD and the SD as a function
of the SNR per bit in a 8×8 system.

observed that, for 16-QAM and at a BER=10−3, the perfor-
mance degradation of the FSD compared to the SD is of 0.06
dB while the K-Best decoder (with K = 16) has a degra-
dation of 0.015 dB. For 64-QAM and at a BER=10−3, the
performance degradation of the FSD compared to the SD is
of 0.03 dB while the K-Best decoder (with K = 64) has a
degradation of 0.05 dB.

The BER performance of the FSD for a 8×8 system for
4- and 16-QAM modulation is shown in Fig. 4. In this case,
the total number of points searched in the FSD is NS = P 2

for a P -QAM constellation following the distribution nS =
(1, 1, 1, 1, 1, 1, P, P )T . Thus, all the possible P points are
searched in the first two levels (i = M,M − 1) and only
the closest point to zi is considered for the remaining levels.
The channel matrix has also been ordered using the FSD pre-
processing. The FSD gives close to ML performance while
calculating even a smaller percentage of Euclidean distances
compared to the 4×4 system (P 2/P 8 � P/P 4). In parti-
cular, for 16-QAM modulation, the degradation compared to
the SD is of 0.25 dB at a BER = 10−3.

The number of real floating point operations of the FSD
is shown in Fig. 5 where its deterministic nature can be ob-
served, indicating the suitability of the algorithm for real-time
hardware implementation. The FSD is compared to the SE
version of the SD with and without channel matrix ordering
in a 4×4 system using 16- and 64-QAM modulation. The
90-percentile is plotted to indicate the number of operations
required to perform the detection process in 90% of the cases.

It can be seen that the FSD has lower complexity than
the different SDs. Only for 16-QAM and at high SNR is the
number of operations of the FSD slightly higher than for the
SD. However, in a parallel implementation of the algorithm,
the FSD requires only one iteration through the levels, from
i = M to i = 1, achieving the maximum throughput (i.e.
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Fig. 5. Complexity of the search stage of the FSD and the
SE-SD as a function of the SNR per bit in a 4×4 system.

number of bits detected per second) of the SD. It should be
noted that the FSD requires a specific ordering of the chan-
nel matrix, but its complexity is equivalent to the vertical
Bell Labs layered space time-zero forcing (VBLAST-ZF) or-
dering of the SD [3]. The complexity of the ordering stage
could be considered negligible for packet-based communica-
tions where the ordering is only performed once per frame.

The number of operations of the complex version of the
K-Best lattice decoder is also plotted for comparison pur-
poses. It can be seen how the complexity of the K-Best lat-
tice decoder is considerably higher for both modulations. For
16-QAM (K = 16), the complexity of the K-Best is higher
by a factor of 13 compared to the FSD, while for 64-QAM
(K = 64), the complexity is higher by a factor of 50. There-
fore, the FSD achieves a similar quasi-ML performance to
that of the K-Best lattice decoder while having a lower fixed
complexity, indicating its suitability for hardware implemen-
tation.

5. CONCLUSION AND FUTURE WORK

The performance and complexity of a new FSD has been ana-
lyzed in this paper. The algorithm calculates the Euclidean
distances of a very small subset of vectors from the complete
set of all transmitted vectors. It also uses a specific ordering
of the channel matrix to achieve quasi-ML performance in
systems where the number of antennas and the constellation
order make the MLD unfeasible.

It has been shown that it has a fixed complexity indepen-
dent of the SNR as opposed to the original SD. This is of
special interest for hardware implementation given that the
fixed number of operations makes possible a highly-pipelined
parallel implementation of the algorithm that can be integrated
into complete wireless communication systems. Therefore,

the FSD overcomes the problem of the SD, where especial
techniques (for example, early termination strategies [8]) are
required to guarantee a minimum throughput.

Finally, the structure of the FSD can be adapted to provide
soft information (a posteriori probabilities) about the detected
bits, similar to the list-SD used for iterative turbo-decoding
[7]. This last aspect is the main subject of ongoing work.
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