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ABSTRACT
In this communication, we propose a new method to
blindly identify the mixing matrix of a possibly under-
determined mixture of cyclostationary source signals. It
is based on the use of a linear operator applied on the
observations correlation matrix. Exploiting the properties
of the above transformed matrix, a set of cyclic frequencies
is first estimated. Then it is used to construct different
estimations of the mixing matrix column vectors. Finally
using a classification procedure, the mixing matrix is then
estimated.

I. INTRODUCTION

We consider the source separation problem which finds
numerous applications in diverse fields of engineering and
applied sciences as e.g. data communications, seismic ex-
ploration, array processing, speech processing etc... It can
be simply formulated as follows. Several linear mixtures of
different signals called sources are observed. The purpose
is then to recover the unknown original sources without
knowing the mixing system. Hence this must be realized
from the only observations and this is the reason why this
problem is often qualified as “blind” or “unsupervised”.

Among the great number of approaches that have been
proposed in the recent literature, we are primary concerned
with a particular class of source signals that is the class of
cyclostationary source signals, see e.g. [1][2][3][4].

It has to be noticed that our developments are based
on the works in [4]. We use the same properties of a
transformed correlation matrix but in a rather different
manner. Indeed, in [4], the number of observations is
assumed to be greater than or equal to the number of source
signals and the algorithm is based on the optimization of
a given contrast function.

It is pointed out in [1] that the contrast function to
be maximized cannot in general be estimated consistently
if the cyclic frequencies of the second order statistics of
the observations are unknown. However, it was showed in
[2][3] that if the second order statistics of various sources
signals do not share the same cyclic frequencies, then their
knowledge is not required.

The main purpose of this communication is to show
that the mixing matrix can be estimated in a wide context.
Indeed we consider the case where the number of observa-
tions is greater than or equal to two and where the (second
order) cyclic frequencies of source signals are unknown.
Notice that in our approach, it is assumed that it exists at
least one different cyclic frequency for all source signals.
Thus the under determined case can be considered. This
is carried out in fully exploiting the particular structure
of the correlation matrix after the application of a linear
transform thanks to an automatic hierarchical ascendent
classification method [5][6]. Computer simulations illus-
trate the effectiveness of the proposed approach.

II. PROBLEM FORMULATION AND MATRIX
DECOMPOSITION

The classical linear memoryless mixture model is con-
sidered. It reads

x(t) = Ms(t) (1)

where x(t) is the (M, 1) vector of observation signals, s(t)
the (N, 1) vector of source signals and M the (M,N)
mixing matrix assumed full rank. We assume that M and
N belongs to N \ {0, 1}.

The source signals are assumed cyclostationary. Hence
their autocorrelation functions Rsi

(t, τ) = E{si(t)s
∗

i (t −
τ)}, i = 1, . . . , N are thus periodic in t with periods Ti,
i = 1, . . . , N respectively. E{.} stands for the mathemati-
cal expectation operator.

IV  553142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



In all the following we assume that the source signals
are uncorrelated and that the cyclic periods are different
two by two, i.e. Ti �= Tj , ∀i, j, i �= j. We define the set
Vi of cyclic frequencies of the i-th source signal as

Vi =

{
νi,k =

k

Ti

, k ∈ Z

}
.

The correlation matrix Rx(t, τ) of x(t) is defined as

Rx(t, τ) = E{x(t)xH(t − τ)} (2)

where (·)H stands for the conjugate transpose operator.
Using (1), it is easy to see that the correlation matrix in
(2) admits the following decomposition

Rx(t, τ) = MRs(t, τ)MH (3)

where Rs(t, τ) is the correlation matrix of the source
signals. Let us now define the following linear operator

R
sf
x (ν, τ) = lim

T→∞

1

T

∫ T
2

−
T
2

Rx(t, τ) exp(−2iπνt)dt (4)

which operates on the matrix argument component wise.
Since this operator is linear, using (3) in (4), we directly
have

R
sf
x (ν, τ) = MR

sf
s (ν, τ)MH (5)

where R
sf
s (ν, τ) is defined similarly to R

sf
x (ν, τ) in (4).

Since source signals are uncorrelated, the matrix
Rs(t, τ) is diagonal for all t and τ . Thus it is also the
case of matrix R

sf
s (ν, τ) for all ν and τ . Now, using the

fact that the source signals have distinct cyclic periods then
there exists values of ν for which R

sf
s (ν, τ) has a particular

structure. Indeed, as Rsf
si

( 1

Tj
, τ) = 0 for all i, j such that

i �= j then

R
sf
x (

1

Ti

, τ) = Rsf
si

(
1

Ti

, τ)mim
H
i (6)

where mi is the i-th column vector of matrix M. That is
R

sf
x ( 1

Ti
, τ) is rank one for all i.

III. PROPOSED APPROACH

Based on (6), for all values of τ such that Rsf
si

( 1

Ti
, τ) �=

0 the i-th column vector mi of matrix M can be esti-
mated (up to the multiplication by a scalar coefficient) as
the eigenvector of R

sf
x ( 1

Ti
, τ) associated with the largest

eigenvalue. As classically considered, we performed it in
using a Singular Value Decomposition (SVD) procedure.
Notice that the above fact holds for all values of τ (such
that Rsf

si
( 1

Ti
, τ) �= 0) and for all values of ν keeping

property (6).
The above procedure requires the knowledge of the

corresponding cyclic frequencies. Let us now consider the
case where they are unknown. For that we propose to
calculate matrices R

sf
x (ν, τ) for a sufficient large set of

frequency points. Then we retains all matrices that are rank

one. Notice that in practice, a threshold is necessary for
the rank one decision procedure. Now, for each of these
matrices, the eigenvector associated to the largest eigen-
value corresponds to one column of the mixing matrix.
Notice again that the considered frequencies set is assumed
sufficient to yield all columns of the mixing matrix.

However a problem subsists. Indeed if we know that
a selected frequency is assigned to a particular column
vector, we do not know which one it is. Moreover, because
matrices are “only” estimated, different vectors estimating
one column are very likely not collinear. Thus there is
a certain dispersion around their theoretical value. Hence
we propose the use of a classification procedure in order to
solve the above problem. One classical way is to compute
the inertia centers of each clusters of points by merging to
the nearest point in order to finally obtain one single point.
This automatic hierarchical ascendent classification method
used in [5] is known under the name of unweighed pair-
group method of aggregation using arithmetic averages
[6]. Among all the found inertia centers, only the N ones
corresponding to the highest weights are selected. The N

associated vectors enable to estimate the N columns of
the mixing matrix, up to their order which corresponds
to the classical permutation indetermination in the blind
separation source problem. We can finally remark that
such an approach could also make it possible to estimate
the number of sources and the cyclic frequencies when
they are assumed unknown. The number of source signals
would correspond to the number of inertia centers having a
sufficient weight. The cyclic frequencies can be estimated
from (non zero) rank one matrices R

sf
x (ν, τ) for different

values of ν.

IV. COMPUTER SIMULATIONS

The above proposed approach is now illustrated thanks
to computer simulations. We consider three mixing matri-
ces. The first one

M1 =

[
1 0.65
0.4 1

]

corresponds to a square mixture (M = 2, N = 2), the
second one

M2 =

⎡
⎣ 1 0.65 0.4

0.4 1 0.8
0.7 0.5 1

⎤
⎦ .

corresponds to a square mixture (M = 3, N = 3), and the
third one

M3 =

[
1 0.65 1
0.4 1 0.8

]
.

corresponds to an under-determined mixture, (M =
2, N = 3). For simplicity, we consider discrete time source
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signals described by the model

s(n) =
∑
k∈Z

a(k)h(n − kT )

where a(n) is an i.i.d. zero-mean random sequence referred
to as the transmitted symbols, T is an integer related to the
period symbol and h(n) is a deterministic waveform signal.
In all cases, a(n) is chosen to take values in the set {−1, 1}
with equal probabilities. The waveform h(n) is chosen
triangular defined for an even cyclic period as: h(n) = 2

T
n

if 0 ≤ n ≤ T
2

; h(n) = − 2

T
n + 2 if T

2
+ 1 ≤ n ≤ T − 1

and h(n) = 0 otherwise. For N = 2 (mixing matrix M1)
the cyclic period of the two considered source signals are
T1 = 4 and T2 = 10. For N = 3 (mixing matrices M2

and M3 ), the cyclic period of the three considered source
signals are T1 = 4, T2 = 10 and T3 = 6. In all cases,
the mean square errors (MSE) of estimated sources and/or
of estimated mixing matrix columns have been evaluated
over 100 Monte Carlo runs.

A priori known cyclic periods: We estimate the two
(resp. three) columns vector of square mixing matrix M1

(resp. M2). We use an SVD decomposition of R
sf
x ( 1

T1

, τ)

and R
sf
x ( 1

T2

, τ) (resp. R
sf
x ( 1

T1

, τ) , R
sf
x ( 1

T2

, τ) and
R

sf
x ( 1

T3

, τ) ∀τ ).
In figure (1) (resp. (2)), we both plot the MSE of

estimated columns of mixing matrix M1 (resp. M2) and
of estimated source signals versus the number of used
samples for τ = 0 and τ = 1. In the under-determined
experiment when the cyclic frequencies are supposed
known. By using R

sf
x ( 1

T1

, τ), R
sf
x ( 1

T2

, τ) and R
sf
x ( 1

T3

, τ)
we estimate the three column vectors of M3. In figure (3),
we plot the MSE of estimated columns versus the number
of used samples for τ = 0 and τ = 1. As classically
observed a good estimation performance is obtained when
the number of samples is large enough.

A priori unknown cyclic periods: First we select a set of
frequencies ν where R

sf
x (ν, τ) are rank one. Then thanks

to the classification procedure we choose two (resp. three)
frequencies points for the square mixture M1 (resp. the
square mixture M2 and the under-determined mixture M3)
which are inertia centers of each clusters. In figure (4)
(resp. (5) and (6)) we have plotted the estimated columns
of mixing matrix M1 (resp. M2 and M3) before and after
the classification method for τ = 0.

We both plot in figure (7) (resp. (8)), the MSE of esti-
mated columns and of estimated source signals of mixing
matrix M1 (resp. M2) versus the number of used samples.
And we plot in figure (9), the MSE of estimated columns
versus the number of used samples in the under-determined
mixture case. We also observe that the performances are
better when the number of samples is large, that is rather
classical. We notice some disturbance both due to the
threshold choice in the rank one decision procedure and
to the choice of the initial set of frequencies.
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Fig. 1. Sources signal MSE and columns MSE of mixing
matrix M1 versus number of samples for τ = 0 and τ = 1.
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Fig. 2. Sources signal MSE and columns MSE of mixing
matrix M2 versus number of samples for τ = 0 and τ = 1.
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Fig. 3. Columns MSE of mixing matrix M3 versus number
of sample for τ = 0 and for τ = 1.
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Fig. 4. The estimated square mixing M1 matrix columns
using a classification procedure for τ = 0.
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Fig. 5. The estimated square mixing M2 matrix columns
using a classification procedure for τ = 0.
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Fig. 6. The estimated mixing M3 matrix columns in the
under-determined case using a classification procedure for
τ = 0.
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Fig. 7. Sources signal MSE and columns MSE of mixing
matrix M1 versus number of samples for τ = 0 and τ = 1.
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