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ABSTRACT

Inmany communication applications, maximum-likelihood

decoding reduces to solving an integer least-squares prob-

lem which is NP hard in the worst-case. On the other hand,

it has recently been shown that, over a wide range of dimen-

sions and SNR, the sphere decoder can be used to find the

exact solution with an expected complexity that is roughly

cubic in the dimension of the problem. However, the com-

putational complexity becomes prohibitive if the SNR is too

low and/or if the dimension of the problem is too large.

In earlier work, we targeted these two regimes attempting

to find faster algorithms by pruning the search tree beyond

what is done in the standard sphere decoder. The search tree

is pruned by computing lower bounds on the possible opti-

mal solution as we proceed to go down the tree. A trade-off

between the computational complexity required to compute

the lower bound and the size of the pruned tree is readily

observed: the more effort we spend in computing a tight

lower bound, the more branches that can be eliminated in

the tree. Thus, even though it is possible to prune the search

tree (and hence the number of points visited) by several or-

ders of magnitude, this may be offset by the computations

required to perform the pruning. In this paper, we propose a

computationally efficient lower bound which requires solv-

ing a single semi-definite program (SDP) at the top of the

search tree; the solution to the SDP is then used to deduce

the lower bounds on the optimal solution on all levels of

the search tree. Simulation results indicate significant im-

provement in the computational complexity of the proposed

algorithm over the standard sphere decoding.

1. INTRODUCTION

We are interested in finding the exact solution to the follow-

ing problem,

min
s∈D⊂Zm

‖x− Hs‖2, (1)

where x ∈ Rm, H ∈ Rm×m and D refers to some subset
of the integer lattice Zm; in this paper, we focus on D =
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2}m. The main idea of the sphere decoder algorithm

[1] for solving (1) is based on finding all points s such that

‖x − Hs‖2 lies within some adequately chosen radius d,

i.e., on finding all s such that

d2 ≥ ‖x− Hs‖2
2, (2)

and then choosing the one that minimizes the objective func-

tion. Using the QR-decompositionH = QR, with Q uni-

tary and R upper triangular, we can reformulate (2) as

d2 ≥ ‖y − Rs‖2
2, (3)

where we have definedy = Q∗x. SinceR is upper-triangular,

(3) can be further rewritten as

d2 ≥ ‖yk:m − Rk:m,k:msk:m‖2

+ ‖y1:k−1 − R1:k−1,1:k−1s1:k−1 − R1:k−1,k:msk:m‖2,

(4)

for any 2 ≤ k ≤ m, where the subscripts determine the en-

tries the various vectors and matrices run over. A necessary

condition for (3) can therefore be obtained by omitting the

second term on the RHS of the above expression to yield

d2 ≥ ‖yk:m − Rk:m,k:msk:m‖2. (5)

The sphere decoder finds all points s in (2) by proceed-

ing inductively on (5), starting from k = m and proceeding

to k = 1. In other words for k = m, it determines all

one-dimensional lattice points sm such that d
2 ≥ (ym −

Rm,msm)2, and then for each such one-dimensional lattice
point sm determines all possible values for sm−1 such that

d2 ≥ ‖ym−1:m − Rm−1:m,m−1:msm−1:m‖2

= (ym − Rm,msm)2

+ (ym−1 − Rm−1,m−1sm−1 − Rm−1,msm)2.

This gives all possible two-dimensional lattice points; one

then proceeds in a similar fashion until k = 1. The sphere
decoder thus generates a tree, where the branches at the

(m− k +1)th level of the tree correspond to allm− k + 1-
dimensional lattice points satisfying (5). In this manner at

the bottom of the tree (the m-th level) all points satisfying

(2) are found.
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The computational complexity of the sphere decoder de-

pends on how d is chosen. In communications we usually

can assume

x = Hs + w, (6)

where the entries of w are independent N (0, σ2) random
variables. In [2] it is shown that, if the radius is chosen

appropriately based on the statistical characteristics of the

noise w, then over a wide range of SNRs and problem di-

mensions the expected complexity of the sphere decoder is

roughly cubic.

2. SPEEDING UP THE SPHERE DECODER

The above assertion unfortunately fails and the computa-

tional complexity becomes increasingly prohibitive if the

SNR is too low and/or if the dimension of the problem is

too large (see [9]). Increasing the dimension of the prob-

lem clearly is useful. Moreover, the use of the sphere de-

coder in low SNR situations is also important when one is

interested in obtaining soft information to pass onto an it-

erative decoder (see, e.g., [3, 4]). To reduce the computa-

tional complexity one approach is to resort to suboptimal

methods based either on heuristics (see, e.g., [5]) or some

form of statistical pruning (see [6]). The other approach is

to use different implementations of the original sphere de-

coder (see e.g. [8] and references therein).

In [7], we attempted to reduce the computational com-

plexity of the sphere decoder while still finding the exact so-
lution. Let us recall how this may be done. Clearly, the com-

plexity of the algorithm depends on the size of the search

tree since each branch in the tree is visited and appropri-

ate computations are then performed. Thus, one approach

would be to reduce the size of the tree beyond that which

is suggested by (5). To do so, suppose that we had some

way of computing a lower bound on the optimal value of

the second term of the RHS of (4):

LB(k−1) = LB(y1:k−1, R1:k−1,1:m, sk:m) ≤

min
s1:k−1∈D⊂Zk−1

‖y1:k−1 − R1:k−1,1:k−1s1:k−1 − R1:k−1,k:msk:m‖2,

where we have emphasized the fact that the lower bound

is a function of y1:k−1, R1:k−1,1:m, and sk:m. Provided our

lower bound is nontrivial, i.e., LB(k−1) > 0, we can replace
(5) by 1

d2 − LB(k−1) ≥ ‖yk:m − Rk:m,k:msk:m‖2. (7)

This is certainly a more restricted condition than (5) and so

will lead to the elimination of more points from the tree.

Note that (7) will not result in missing any lattice points

from (2) since we have used a lower bound for the remainder

1LB(k−1) = 0, of course, simply corresponds to the standard sphere
decoder.

of the cost in (4). Assuming that we have some way of

computing a lower bound, we state the modification of the

standard sphere decoder algorithm based on the use of (7)

with LB(k−1) > 0. The algorithm uses Schnorr-Euchner
strategy with the radius update.

Input: Q, R, x, y = Q∗x, d = d̂, ll1:m = 01×m.

1. Set k = m, d2
m = d2, ym|m+1 = ym

2. (Bounds for sk) Set ub(sk) = �
√

d2
k
−(d2−d̂2)+yk|k+1

rk,k
�,

lb(sk) = �−
√

d2
k
−(d2−d̂2)+yk|k+1

rk,k
	, lk = � lb(sk)+ub(sk)+1

2 �,
uk = lk + 1

3. (Zig-zag through sk)

if llk = 0, sk = lk, lk = lk − 1, llk = 1, otherwise
sk = uk, uk = uk + 1, llk = 0.

If lb(sk) ≤ sk ≤ ub(sk), go to 4, else go to 5.

4. if LB(k−1)+(yk|k+1−rk,ksk)2−d2
k+(d2−d̂2) > 0,

go to 3, else go to 6.

5. (Increase k) k = k + 1; if k = m + 1 terminate
algorithm, else go to 3.

6. (Decrease k) If k = 1 go to 7. Else k = k − 1,
yk|k+1 = yk−

∑m

j=k+1 rk,jsj , d
2
k = d2

k+1−(yk+1|k+2−
rk+1,k+1sk+1)

2, and go to 2.

7. Solution found. Save s and its distance from x, d̂ =
d2

m − d2
1 + (y1 − r1,1s1)

2, and go to 3.

Clearly, the tighter the lower bound LB(k−1), the more

points that will be pruned from the tree. Of course, we can-

not hope to find the optimal lower bound since this requires

solving an integer least-squares problem (which was our

original problem to begin with). Instead, we consider ob-

taining lower bounds on the integer least-squares problem

min
s1:k−1∈D⊂Zk−1

‖z(k−1) − R1:k−1,1:k−1s1:k−1‖2, (8)

where we have defined z(k−1) = y1:k−1 −R1:k−1,k:msk:m.

Note that finding a lower bound on (8) requires some
computational effort. Therefore, it is a natural question to

ask whether the benefits of additional pruning outweigh the

additional complexity incurred by computing a lower bound.

In [7], we considered a duality based lower bound obtained

by solving

LB
(k−1)
SDP = max Tr(Λ)

subject to Qk−1 
 Λ, Λ is diagonal, (9)

where

Qk−1 =

[1
4RT

1:k−1,1:k−1R1:k−1,1:k−1 − 1
2RT

1:k−1,1:k−1z(k−1)

− 1
2z

T
(k−1)R1:k−1,1:k−1 zT

(k−1)z(k−1)

]
.
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Fig. 1. Comparison of number of points per level in search
tree,m = 100, SNR = 10dB, D = {− 1

2 , 1
2}k−1

The dashed and the solid lines in Figure 1 compare the

average number of points on each level of the search tree

visited by the basic sphere decoding algorithmwith the cor-

responding number of points visited by the sphere decoding

algorithmwhich employs a lower bound (9). We refer to the

former as the SD-algorithm and to the latter as the SDSDP-

algorithm. As evident from Figure 1, the number of points

in the search tree visited by the SDSDP-algorithm is several

orders of magnitude smaller than that visited by the SD-

algorithm. Therefore, a good lower bound can help prune

the tree much more efficiently than the standard sphere de-

coding alone. However, computing LBSDP requires solv-

ing an SDP per each point in the search tree. Since this

requires computational effort roughly cubic in k, the total

flop count savings are not as significant as the savings in the

number of examined tree points shown in Figure 2. There-

fore, there is merit in searching for lower bounds that may

not be as tight as (9), but which require significantly lower

computational effort.

Such a lower bound is derived in the next section. As a

preview of the results to come, the number of points per

level in the search tree where this new bound is used is

shown in Figure 1. Clearly, the new bound significantly

reduces the number of points visited by the basic sphere

decoding algorithm. Moreover, it turns out that its compu-

tation requires very low additional effort beyond the basic

sphere decoding complexity, as we show in the next section.

3. BOUND ON SOLUTION OF SDP

In this section, we derive a lower bound LB
(k−1)
sdp on the

value of LB
(k−1)
SDP in (9). To this end, let Λ̂ denote the opti-

mal solution of

max Tr(Λ)

subject to Q 
 Λ, Λ is diagonal, (10)

where

Q =

[
1
4RT R − 1

2RTy

− 1
2y

T R yT y

]
,

and let LLT = 1
4RT R − Λ̂, where L is a lower triangular

matrix. Also, let M = L−1RT . Using the fact that the

matrices L and RT are lower triangular we obtain

(L1:k−1,1:k−1)
−1 = (L−1)1:k−1,1:k−1,

L1:k−1,1:k−1(L1:k−1,1:k−1)
T =

1

4
RT

1:k−1,1:k−1R1:k−1,1:k−1

− Λ̂1:k−1,1:k−1,

and M1:k−1,1:k−1 = (L1:k−1,1:k−1)
−1RT

1:k−1,1:k−1. Fur-

thermore, let

λk = zT
(k−1)z(k−1)−1

4
zT
(k−1)M

T
1:k−1,1:k−1M1:k−1,1:k−1z(k−1)

(11)

and let

LB
(k−1)
sdp =

{∑k−1
i=1 Λ̂i,i + λk if λk ≥ 0

0 if λk < 0.
(12)

Now it is clear that LB
(k−1)
sdp ≤ LB

(k−1)
SDP since

LB
(k−1)
sdp = Tr(diag(Λ̂1,1, Λ̂2,2, . . . , Λ̂k−1,k−1, λk))

and diag(Λ̂1,1, Λ̂2,2, . . . , Λ̂k−1,k−1, λk) is an admissiblema-
trix in (9) if λk ≥ 0. On the other hand, if λk < 0,

LB
(k−1)
sdp = 0 and clearly LB

(k−1)
sdp ≤ LBSDP .

We refer to the algorithm which uses LB
(k−1)
sdp in place

of LB(k−1) in (7) as the SDsdp-algorithm. Clearly, using

LB
(k−1)
sdp instead ofLB

(k−1)
SDP results in pruning fewer points

in the search tree. However, computation of LB
(k−1)
sdp is

quite more efficient than the cubic computation ofLB
(k−1)
SDP .

In particular, unlike in the SDSDP-algorithm, we need to

solve only one SDP – the one given by (10). Then we

may compute LB
(k−2)
sdp recursively from LB

(k−1)
sdp , which

requires complexity linear in k. This is shown next.

Recall that z(k−1) = y1:k−1 − R1:k−1,k:msk:m. It is

easy to see that we can compute z(k−2) from z(k−1) as

z(k−2) = (z(k−1))1:k−2 − R1:k−2,k−1sk−1. (13)

Furthermore, note that b(k−1) = M1:k−1,1:k−1z(k−1) can

be computed recursively as

b(k−2) = M1:k−2,1:k−2z(k−2)

= M1:k−2,1:k−2((z(k−1))1:k−2 − R1:k−2,k−1sk−1)

= M1:k−2,1:k−2(z(k−1))1:k−2−M1:k−2,1:k−2R1:k−2,k−1sk−1

= b
(k−1)
1:k−2 − (MR)1:k−2,k−1sk−1. (14)
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Using b(k−2) and z(k−2) we compute λk−1 from (11),

and LB
(k−2)
sdp from (12). The number of operations required

to compute LB
(k−2)
sdp in each node at the (m − (k − 2))th

level of the search tree is 4(k − 2) additions and 2(k − 2)
multiplications. For the basic sphere decoder, the number

of operations per each node at the (m − k + 1)th level is
(2k + 17). This essentially means that the SDsdp algorithm
performs about four times more operations per each node

of the tree than the standard sphere decoder algorithm does.

In other words, if the SDsdp-algorithm prunes at least four

times more points that the basic sphere decoder, the new al-

gorithm is faster in terms of the flop count. This is clearly

the case in Figure 1, where the total number of the tree

points visited by the SDsdp algorithm is 100-times smaller
than the number of the tree points visited by the basic sphere

decoder.

4. SIMULATION RESULTS

Figure 2 compares the expected complexity of the SDsdp-

algorithm to the expected complexity of the SD-algorithm.

The plots on Figure 2 were generated for the system of di-

mension m = 50. Note that the signal-to-noise ratio in
Figure 2 is defined as SNR = 10log10

m
4σ2 , where σ2 is the

variance of each component of the noise vector w. Both

algorithms choose the initial search radius statistically as in

[2], and update the radius every time the bottom of the tree is

reached. As the simulation results in Figure 2 indicate, the

SDsdp algorithm runs more than 10 times faster than the SD

algorithm. [Needless to say, the bit error-rate performance

of both algorithms coincide with the maximum-likelihood.]
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5. SUMMARY AND DISCUSSION

Adding a lower bound on the remainder of the cost function

has the potential to prune the search tree significantly more

than the standard sphere decoder algorithm prunes. How-

ever, more significant pruning of the search tree does not, in

general, guarantee that the modified algorithm will perform

faster than the standard sphere decoder algorithm. This is

due to the additional computations required by the modified

algorithm to find a lower bound in each node of the search

tree. Therefore, the lower bound on one hand has to be as

tight as possible in order to prune the search tree as much

as possible, and on the other hand it should be efficiently

computable.

Led by these two main characteristics, in this paper we

introduced a new type of a lower bound. The new bound

is a lower bound on the solution of the SDP-relaxation of

the (0, 1)–integer least-squares problem. It requires solving
only onem-dimensional SDP, wherem is the dimension of

the problem, whose solution is then efficiently processed to

obtain bounds at each tree level k; these additional opera-

tions for computing the lower bounds are only linear in k.

Simulation results show that the new SDsdp algorithm out-

performs the basic sphere decoder algorithm in terms of the

flop count.

The main computational burden of the SDsdp algorithm

is in solving them-dimensional SDP. Seeking efficient ways

of obtaining the solution to the SDP is of interest for future

work.
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