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ABSTRACT
In this paper, a new second-order statistics (SOS) based method

for blind decoding of orthogonal space time block coded (OSTBC)

systems with only one receive antenna is proposed. To avoid the in-

herent ambiguities of this problem, the spatial correlation matrix of

the source signals must be non-white and known at the receiver. In

practice, this can be achieved by a number of simple linear preco-

ding techniques at the transmitter side. More specifically, it is shown

in the paper that if the source correlation matrix has different eigen-

values, then the decoding process can be formulated as the problem

of maximizing the sum of a set of weighted variances of the signal

estimates. Exploiting the special structure of OSTBCs, this problem

can be reduced to a principal component analysis (PCA) problem,

which allows us to derive computationally efficient batch and adap-

tive blind decoding algorithms. The algorithm works for any OSTBC

(including the popular Alamouti code) with a single receive antenna.

Some simulation results are presented to demonstrate the potential

of the proposed procedure.

1. INTRODUCTION

Orthogonal space time block codes (OSTBC) [1, 2, 3] appear as

an important class of space time block codes, which provides full

diversity and low complexity maximum likelihood (ML) decoding.

In recent years, blind decoding of STBCs [4] and OSTBCs has re-

ceived increasing interest, for instance, in [5] the authors propose a

PCA-based blind decoding method which is able to restore the chan-

nel and source signals for the most of the OSTBCs when more than

one receive antenna is available.

In many real applications, the source signals exhibit autocorrela-

tion properties, which can be exploited for developing blind equali-

zation algorithms [6]. In this paper we present a new computationally

efficient method for OSTBC decoding with only one receive anten-

na which exploits the correlation properties of the source signals. In

particular, we prove that a sufficient condition for blind decoding is

that one of the eigenvalues of the correlation matrix has multiplicity

one. In this way, we can propose a blind decoding criterion which

consists on the maximization of a weighted sum of the estimated

signal variances. Furthermore, by exploiting the linear dependence

between the multiple-input single-output (MISO) channel and the

OSTBC equalizers, the criterion can be rewritten as a function of the

estimated channel, which reduces the blind decoding problem to a

single principal component analysis (PCA) [7] problem. Finally, the

direct application of the Oja’s rule [7], provide a fast and efficient

adaptive blind decoding algorithm for OSTBCs.
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2. OVERVIEW OF MISO-OSTBC SYSTEMS

Let us consider a system with Q transmit antennas where the

information symbols to be transmitted are taken M at a time to form

a P × Q data block S[n]. This block is transmitted in P channel

uses, and hence, the average code rate is M/P symbols per channel

use. For linear space time block codes the transmitted data block is

generated as

S[n] =
N∑

k=1

sk[n]Ck,

where sk[n] and sM+k[n] denote, respectively, the real and imagi-

nary part of the k-th information symbol of the n-th data block, and

the parameter N is N = 2M for general complex constellations

and N = M for real constellations. In particular, for orthogonal

space time block codes (OSTBC) the code matrices fulfil [3], for

k, l = 1, . . . , N

CH
k Cl =

{
I k = l,

−CH
l Ck k �= l.

(1)

Considering one receive antenna and a slow flat fading channel,

i.e. a channel with coherence time substantially larger than the data

block length P , the received signal can be written as

x[n] = S[n]h + u[n],

where h is the Q× 1 complex channel response and u[n] is a P × 1

noise vector. Defining the “tilde” operator Ã = [�(A)T ,�(A)T ]T ,

and applying it to the above equation yields

x̃[n] = W̃(h)s[n] + ũ[n],

where W(h) = [w1(h) · · ·wN (h)], wk(h) = Ckh and s[n] =
[s1[n], . . . , sN [n]]T .

It can be derived in a straightforward manner that, under the

conditions (1), the combined code-channel response vectors w̃k(h)
satisfy

w̃T
k (h)w̃l(h) =

{ ‖h‖2 k = l,
0 k �= l,

for k, l = 1, . . . , N , which implies that assuming zero-mean, tempo-

rally and spatially white Gaussian noise uncorrelated with the data,

the maximum likelihood (ML) estimator of s[n], given h, is [3]

ŝh[n] =
W̃T (h)x̃[n]

‖h‖2
, (2)
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where the subindex h has been included to denote the dependency

on the true channel. Eq. (2) can be rewritten as

ŝh[n] =

⎡
⎢⎣

x̃T [n]F̃1

...

x̃T [n]F̃N

⎤
⎥⎦ h̃

‖h‖2
, (3)

where Fk = [Ck jCk], for k = 1, . . . , N , h̃ = [�(h)T ,�(h)T ]T ,

and the equalizers are given by w̃k(h) = F̃kh̃.

3. BLIND DECODING THROUGH PCA

Assuming zero mean white noise with variance η2, and consi-

dering that the noise is uncorrelated with the data, the correlation

matrix of the data vectors x̃[n] is given by

Rx̃ = E[x̃[n]x̃T [n]] = W̃(h)E[s[n]sT [n]]W̃T (h) +
η2

2
I,

and taking into account the eigenvalue decomposition of the correla-

tion matrix E[s[n]sT [n]] = QΣ2QT , where Q and Σ are N × N
unitary and diagonal matrices respectively, it is easy to realize that

the eigenvectors associated to the N largest eigenvalues of Rx̃ are

given by the columns of the matrix W̃(h)Q, and then we can pro-

pose the following criterion

J1(ĥ) = Tr
(
W̃T (ĥ)Rx̃W̃(ĥ)

)
, (4)

which is maximized for any estimated channel ĥ such that the corres-

ponding code-channel matrix W̃(ĥ) satisfies [5]

range(W̃(ĥ)) = range(W̃(h)). (5)

Finally, by combining equations (2), (3) and (4), the function to be

maximized can be rewritten as

J1(ĥ) = ‖h‖2‖ĥ‖2E[ŝT
ĥ [n]ŝĥ[n]] =

ˆ̃
hT

(
N∑

k=1

F̃T
k Rx̃F̃k

)
ˆ̃
h,

which reduces the problem of estimating the channel to a principal

component analysis (PCA) [7] problem, i.e. the true channel can be

obtained, with a sign and scale indeterminacy, as the channel provi-

ding an estimated output signal ŝĥ[n] with maximum variance.

Unfortunately, in the case of a single receive antenna, most of the

practical OSTBCs provide a non-null subspace of possible estimates

ĥ �= ch satisfying (5), which implies that the largest eigenvalue of

the new correlation matrix

N∑
k=1

F̃T
k Rx̃F̃k,

has a multiplicity larger than one and introduces an additional am-

biguity among the eigenvectors associated to the largest eigenvalue

and their linear combinations. To overcome this problem, in [5] the

authors extend the idea to the case of several receive antennas, whi-

ch reduces drastically the number of OSTBCs provoking this ambi-

guity. Another possibility consists on selecting the estimate ĥ whi-

ch maximizes J1(ĥ) and simultaneously optimizes some additional

criterion. For instance, we could use a criterion based on the higher

order statistics (HOS) of the source signal or its finite alphabet pro-

perty in order to eliminate this ambiguity. As an alternative, in the

next section we propose a technique based solely on the exploitation

of the second order statistics (SOS) of the source signal.

4. AVOIDING THE AMBIGUITY WITH CORRELATED
SOURCES

In many real situations, the source signal to be transmitted exhi-

bits a non-white spectrum, which can be use to blindly equalize the

channel [6]. The autocorrelation properties of the source sequences

can be due to a previous precoding step, such as a convolutional co-

de or a partial response system (PRS) [8, 9, 10]. In this section we

propose a modified cost function which exploits the correlation pro-

perties of the source signal to blindly estimate the channel response

with only one receive antenna.

4.1. Uncorrelated source signals with different variances

Let us start by considering that the source signals are uncorre-

lated, which implies that E[s[n]sT [n]] = Σ2 is a diagonal matrix

with elements σ2
1 , . . . , σ2

N . Assuming, without loss of generality,

that σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
N , we propose the following modified

function

J2(ĥ) = Tr
(
ΛW̃T (ĥ)Rx̃W̃(ĥ)Λ

)
, (6)

where Λ is a weighting matrix with elements λ1 ≥ λ2 ≥ . . . ≥ λN

in its diagonal and zeros elsewhere. Then, combining equations (2)

and (6), the criterion to be maximized now is

J2(ĥ) = ‖h‖2‖ĥ‖2E[ŝT
ĥ [n]Λ2ŝĥ[n]], (7)

and taking into account that

W̃T (ĥ)W̃(ĥ)/‖ĥ‖2 = W̃T (h)W̃(h)/‖h‖2 = I,

it is easy to realize that

‖E[ŝĥ[n]ŝT
ĥ [n]]‖2

F ≤
N∑

k=1

(
σ2

k +
η2

2‖h‖2

)
,

where the equality is satisfied iff (5) holds. Furthermore, we can find

that

E[ŝT
ĥ [n]Λ2ŝĥ[n]] ≤

N∑
k=1

λ2
k

(
σ2

k +
η2

2‖h‖2

)
,

and the above equality is satisfied iff

range(W̃k(ĥ)) = range(W̃k(h)), k = 1, . . . , N,

where W̃k(h) is defined as the matrix containing the equalization

vectors w̃l(h), for σ2
l = σ2

k or λ2
l = λ2

k. In this way, a sufficient (but

not necessary) condition to avoid the ambiguity is that the variance

and the corresponding weight of one of the source signals sk[n] be

different from the remaining ones.

Finally, combining equations (3) and (7), the function to be ma-

ximized is

J2(ĥ) =
ˆ̃
hT

(
N∑

k=1

λ2
kF̃

T
k Rx̃F̃k

)
ˆ̃
h,

which reduces the estimation problem to a PCA problem where the

true channel is obtained, with the scale and sign indeterminacy, as

the channel providing an estimated weighted output signal with ma-

ximum variance.

Here it is interesting to point out that the selection of the weights

λk offers a degree of freedom that can be exploited in different ways.
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Initialize the learning rate µ and the estimated channel
ˆ̃
h[0] �= 0.

for n = 1, 2, . . . do
for k = 1, 2, . . . , N do

Obtain ŷk[n] = λkx̃
T [n]G̃k

ˆ̃
h[n − 1].

Update
ˆ̃
h[n] =

ˆ̃
h[n − 1] + µλkG̃

T
k x̃[n]ŷk[n].

Normalize
ˆ̃
h[n] =

ˆ̃
h[n]/‖ˆ̃

h[n]‖.

Obtain ŝk[n] = x̃T [n]F̃k
ˆ̃
h[n]

end for
end for

Algorithm 1: Summary of the proposed adaptive algorithm.

For instance, the trivial selection Λ = I reduces (6) to (4), which im-

plies that the ambiguities are given by (5). A better alternative con-

sists on selecting the weights such that if σ2
k > σ2

l then λ2
k > λ2

l ,

in particular, we can select Λ = Σ following the idea of the mat-

ched filter [8]. As can be seen later, this selection of the parameters

provides a decoding algorithm with good performance.

4.2. Generalization to correlated source signals

Considering that the correlation matrix E[s[n]sT [n]] = QΣ2QT

is known, the eigenvectors associated to the N largest eigenvalues of

Rx̃, which are given by the columns of the matrix W̃(h)Q, can be

seen as the equalizers ṽk(h) of a different OSTBC code with code

matrices

Dk =
N∑

l=1

qlkCl, k = 1, . . . , N,

where qlk is the l-th row and k-th column element of the matrix Q.

Thus, the criterion to be maximized is

J3(ĥ) = Tr
(
ΛṼT (ĥ)Rx̃Ṽ(ĥ)Λ

)
, (8)

where V(ĥ) = [v1(ĥ) · · ·vN (ĥ)], vk(ĥ) = Dkĥ, ṽk(ĥ) = G̃k
ˆ̃
h

and Gk = [Dk jDk]. Following a similar development to that of

the previous subsection, the final criterion to be maximized is

J3(ĥ) =
ˆ̃
hT

(
N∑

k=1

λ2
kG̃

T
k Rx̃G̃k

)
ˆ̃
h, (9)

and the ambiguity problem is restricted to the codes and sources sa-

tisfying

range(Ṽk(ĥ)) = range(Ṽk(h)), k = 1, . . . , N,

where Ṽk(ĥ) and Ṽk(h) are defined as the matrices containing the

equalization vectors ṽl(ĥ) and ṽl(h) respectively, for σ2
l = σ2

k or

λ2
l = λ2

k.

Finally, it is easy to realize that the particular case of Q = I
implies Dk = Ck and G̃k = F̃k, and then (6) can be seen as

a particular case of (9). Analogously, in the case of Λ = I (8) is

equivalent to (4).

4.3. Final remarks and implementation

The results of the previous subsection show that the estimation

technique is reduced to the solution of a PCA problem, i.e. the ex-

traction of the main eigenvector of the 2Q × 2Q correlation matrix

N∑
k=1

λ2
kG̃

T
k Rx̃G̃k.
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Fig. 1. MSE of a duobinary signal for the Alamouti code.

In practice, the true correlation matrix Rx̃ is unavailable and we

must estimate the sample covariance matrix

R̂x̃ =
1

T

T∑
n=1

x̃[n]x̃T [n],

where T is the number of available received blocks. An alternative

to this implementation of the algorithm is the direct application of

the Oja’s rule [7]

ˆ̃
h[n] =

ˆ̃
h[n − 1] + µλkG̃

T
k x̃[n]ŷk[n],

where µ is the learning rate, and ŷk[n] = λkx̃
T [n]G̃k

ˆ̃
h[n − 1] is

the estimate of the rotated and weighted version of the source sig-

nal sk[n]. Finally, the overall adaptive algorithm is summarized in

Algorithm 1.

5. SIMULATION RESULTS

In this section the performance of the proposed algorithm is eva-

luated through some simulation examples. In all the simulations, the

results of 1000 independent realizations are averaged. The elements

of the flat fading MISO channels are zero-mean, circular, complex

Gaussian random variables with unit variance, the SNR is defined as

10 log10(η
2
s/η2), where η2

s is the total transmitted energy and η2 is

the noise variance.

The source signals are binary i.i.d signals precoded by a filter

with response H(z) = 1+z−1, which is the filter used in duobinary

modulation, then at its output we have a correlated symbol sequence

drawn from the alphabet {−2, 0, +2} with probabilities 1/4, 1/2 and

1/4 respectively. Two duobinary signals are the real and imaginary

parts of the complex symbols which are the input of the OSTBC

coder. In this way, the elements of the matrix E[s[n]sT [n]] are 2 in

its main diagonal, 1 in its first diagonals above and below the main

diagonal, and zeros elsewhere. In all the simulations, the weighting

matrix has been selected as Λ = Σ.

In the first example, the Alamouti [1] code has been selected,

and the performance of the proposed batch algorithm is compared
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Fig. 2. BER of a duobinary signal for the rate=3/4 code.

with the coherent ML receiver and the differential receiver proposed

in [3]. Figure 1 shows the mean squared error (MSE) in the signal

estimate for T = 100 and T = 500 received blocks. As can be seen,

the proposed blind decoder outperforms the differential receiver at

low and moderate SNRs. The noise floor present in the proposed

method can be attributed to the difference between the true correla-

tion matrix and its sample mean (this noise floor rapidly decreases

with the number of available blocks).

In the second example, we have tested the 3/4 OSTBC code for

M = 3 complex symbols, P = 4 time slots and Q = 3 transmit

antennas, which is presented in eq. (7.4.9) of [3]. Figure 2 shows the

final BER after decoding, where we can see that the proposed met-

hod again outperforms the differential receiver in low and moderate

SNRs.

Finally, the proposed adaptive version of the algorithm has been

tested with the 3/4 OSTBC code. The MSE of the channel estimate

for SNR=20dB and three different learning rates (µ = 0,05, µ =
0,1 and µ = 0,2) is shown in Fig. 3. As can be seen, the trade-

off between the speed of convergence and the final residual error is

determined by the learning rate.

6. CONCLUSIONS

In this paper, a new method for blind channel estimation and de-

coding of OSTBC systems with only one receive antenna have been

presented. The proposed method is based solely on second order sta-

tistics (SOS) and the main idea consists on exploiting the correlation

of the source signals, which is assumed to be known. We have proved

that, if at least one of the eigenvalues of this correlation matrix has

multiplicity one, then the channel and source signals can be extrac-

ted unambiguously, up to a sign and scale factor, by means of a sim-

ple principal component analysis (PCA) procedure. The simulation

results have shown that, for low and moderate SNRs, the proposed

batch and adaptive algorithms are better than the differential recei-

ver and very similar to the coherent receiver. As further lines we can

cite the theoretical study of the optimum selection of the weighting

matrix, as well as the analysis of some linear precoding techniques

which can reduce or avoid the noise floor due to the finite sample

problem.
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Fig. 3. Performance of the proposed adaptive algorithm. SNR=20dB.
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