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ABSTRACT

In this paper we propose an extended differential unitary space-
time modulation (xDUSTM) scheme that can offer improved error
performance over the differential unitary space-time modulation
(DUSTM) scheme. DUSTM is well suited to rapidly time-varying
unknown channels. It has a simple structure, but incurs an error
performance penalty of about 3dB compared to its coherent coun-
terpart. The xDUSTM scheme considers moderately fast time-
varying channels, and is designated to exploit such a characteristic
for performance improvement. In xDUSTM, a problem that needs
to be addressed is the complexity of its non-coherent maximum-
likelihood (ML) receiver. We show that by choosing the orthogo-
nal space-time block code (OSTBC) designs, the ML problem can
be reduced to a Boolean quadratic program for which highly effec-
tive algorithms are available. Simulation results illustrate that the
error performance penalty in xDUSTM can be reduced to 1dB.

1. INTRODUCTION

In wireless communication over a fast time-varying fading chan-
nel, it is not always affordable to employ coherent demodulation
(or detection) methods because pilot signals have to be regularly
re-transmitted to keep track of the channel state information (CSI).
In those situations it may be appropriate to consider non-coherent
communications [1,2], which assumes no knowledge of CSI at the
receiver and transmitter. In single-antenna systems, a well-known
non-coherent scheme is the differential phase shift keying (DPSK).
The DPSK scheme enjoys its simplicity in the encoding and de-
tection processes, with a reasonable error performance penalty of
(approximately) 3dB compared to its coherent counterpart.

In multi-antenna communications, a scheme suitable for
rapidly time-varying channels is the differential unitary space-time
modulation (DUSTM) [3, 4]. Being a multiple-input-multiple-
output (MIMO) generalization of DPSK, DUSTM is based on the
reasonable assumption that the channel coefficients can only re-
main constant over 2 consecutive space-time code blocks. The
potential of DUSTM in non-coherent MIMO communications has
attracted considerable attention, leading to a variety of space-time
unitary code designs for DUSTM. Some representative designs in-
clude (but are not restricted to) the diagonal group codes [3, 4],
the Cayley codes [5], and the orthogonal space-time block codes
(OSTBCs) [6–8]. Each design has its own tradeoff in data rate and
diversity performance. Some discussions comparing the various
designs can be found in [5, 8]. An important issue in DUSTM is

the receiver complexity. Specifically, the non-coherent maximum-
likelihood (ML) detector for DUSTM can be complex to use if
the size of the space-time code constellation is large. Some ML
approximations, which are often code dependent [5, 9], may be
required to alleviate the complexity. From a receiver viewpoint,
a good unitary code is that based on the OSTBC designs. The
OSTBC designs are simple in that the code matrix is a linear com-
bination of some basis matrices. Using this linear property, it is
shown that the non-coherent ML detector can be reduced to a sim-
ple linear process without approximation [7, 8].

While DUSTM is suitable for rapidly time-varying channels,
it incurs an error performance penalty of 3dB compared to its co-
herent counterpart (which is like the case in DPSK). In this paper
we are interested in moderately fast fading channels, where the
channel coefficients can remain constant over a frame of multi-
ple code blocks. In practice there are many situations where the
channel is static for a moderate duration of, say, 10 to 20 sym-
bols. We propose an extended DUSTM (xDUSTM) scheme that
exploits this frame static channel property to provide improved er-
ror performance. In this new scheme, the differential transmission
process is done on a frame-by-frame basis. At the receiver side, the
non-coherent detection of the codes is performed for each frame
too. Section 3 will describe the details of xDUSTM, and will give
arguments on why this scheme is expected to provide enhanced
performance. The difficulty in using xDUSTM lies in the imple-
mentation of the non-coherent ML detector, which is much more
complex than that of DUSTM. To handle this problem, we suggest
to employ the OSTBC designs with a quaternary phase shift keying
(QPSK) symbol constellation. It is shown that the associated ML
detector can be simplified to a Boolean quadratic program (BQP).
The BQP is still hard to solve from a complexity theory view-
point, but in practice there are very effective algorithms for the
BQP, such as the sphere decoder [10] and semidefinite relaxation
(SDR) [11,12]. Some numerical results showing the fidelity of the
sphere decoder and SDR algorithm can be found in [10, 12]. By
using either one of these algorithms, the ML implementation can
be handled in a computationally efficient manner. Our simulation
results, given in Section 4 will show that the error performance
of the OSTBC xDUSTM method improves as the frame size in-
creases. In particular, for a frame of 18 symbol intervals, the error
performance penalty of OSTBC xDUSTM can be reduced to 1dB.

2. REVIEW OF DUSTM

This section reviews several key ideas of DUSTM.
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We consider a scenario where space-time block codes (ST-
BCs) are transmitted over a frequent-flat, time-varying MIMO
channel. Let Mt and Mr be the numbers of transmitter and re-
ceiver antennas, respectively. Moreover, let T denote the time
length of the STBCs. A usual assumption in such a scenario is
that the channel coherence interval1 is larger than T , such that the
channel coefficients are (almost) constant during the transmission
of a single STBC. The received signal model is given by

Yp = HpCp + Vp (1)

Cp ∈ C
Mt×T STBC transmitted at pth time block

Yp ∈ C
Mr×T received signal matrix at pth time block

Hp ∈ C
Mr×Mt MIMO channel at pth time block

Vp ∈ C
Mr×T independent and identically distributed (i.i.d.)

circular Gaussian noise matrix with zero mean
and variance No.

In DUSTM, a key assumption is that the channel coherence
interval is larger than 2T such that

Hp−1 � Hp (2)

for any p. Moreover, Cp are assumed to be square; i.e., T =
Mt. At each time block index p, a block of information bits is
mapped to a signal matrix Up ∈ U ⊂ C

T×T , where U denotes
the constellation set of Up. The codewords in U are restricted to be
unitary; i.e., UHU = I for all U ∈ U . The signal matrices Up are
differentially encoded, via the following fundamental transmission
equation:

Cp = Cp−1Up, p = 1, 2, . . . , (3)

with C0 initialized to be an arbitrary unitary matrix, assumed to
be unknown to the receiver.

For simplicity but without loss of generality, let us consider
Y0 and Y1 only. Let

H̃ = H0C0. (4)

Note that H̃ = H1C0, owing to the quasi-static channel property
in (2). The following received signal model is obtained:

Y0 = H̃ + V0 (5a)

Y1 = H̃U1 + V1 (5b)

It is interesting to point out that the formulation in (5) is equivalent
to that of a pilot-assisted system, where a pilot code I is transmitted
in (5a). If H̃ is treated as a deterministic unknown, then the ML
detection of U1 for the model in (5) is a joint optimization problem
given by

{Ĥ, Û1} = arg min
H̃∈C

Mr×Mt ,
U1∈U

‖Y0−H̃‖2
F +‖Y1−H̃U1‖2

F (6)

where Ĥ and Û1 denote the ML solution of H̃ and U1, respec-
tively, and ‖.‖F is the Frobenius norm. By exploiting the unitarity
of Up, it is shown [13] that (6) can be reduced to

Û1 = arg max
U1∈U

‖[ Y0 Y1 ][ I U1 ]H‖2
F (7)

1Here, the channel coherence interval is defined to be the maximum
number of consecutive time samples that the fading coefficients remain
(approximately) static.

where Û1 can be obtained alone without Ĥ. Problem (7) can be
further simplified to

Û1 = arg max
U1∈U

Re{tr{Y0U1Y
H
1 }} (8)

The ML detector illustrated above is known as the determinis-
tic ML detector in the blind detection context. It is worthwhile to
mention that in the DUSTM literature, there are several other al-
ternate ML formulations following different assumptions; e.g., the
‘virtually coherent’ ML detector [7, 8] which treat H̃ as if it were
the true channel, and the stochastic ML detector [1, 3, 4] which
uses the assumption of i.i.d. zero-mean circular Gaussian H̃. In-
terestingly all these ML detectors are equivalent in that they solve
(7) or (8).

As mentioned in the last section, there are various designs for
the unitary signal constellation. This work focuses on the orthogo-
nal space-time block code (OSTBC) designs, with an emphasis on
the QPSK symbol constellation. Given a block of information bits
s = [ s1, . . . , sK ]T ∈ {±1}K where K is the number of bits per
block, a QPSK OSTBC function Q : R

K → C
Mt×T is a linear

combination of matrices

Q(s) =
1√
K

�
�

K/2�
k=1

Aksk + j

K/2�
k=1

Bsk+K/2

�
� , (9)

where Ak,Bk ∈ R
Mt×T are known matrices. In the above for-

mulation sk and sk+K/2 serves as real and imaginary parts of a
QPSK symbol, respectively. In the OSTBC designs Ak and Bk

are carefully chosen such that Q(s)QH (s) = (‖s‖2/K)I = I;
see [7, 8] and the references therein. It is convenient to rewrite (9)
as:

Q(s) =
K�

k=1

Xksk (10)

where Xk ∈ C
Mt×T . In DUSTM via OSTBCs, each signal matrix

Up is a square OSTBC

Up = Q(sp) (11)

where sp = [ s1p, . . . , sKp ]T ∈ {±1}K is the vector of transmit-
ted bits at the p time block.

The ML receiver structure of OSTBC DUSTM is attractive
compared to that of the other nonlinear DUSTM methods. For
a generic unitary constellation, we need to perform an exhaus-
tive search over U to find the optimal decision in (8). To re-
duce computational complexity, some approximations may be re-
quired [5, 9]. For OSTBC DUSTM, it can be shown [7, 8] from
(8) and (10) that the ML detection of s1 is the simple process
ŝk1 = sign(Re{tr{Y0XkY

H
1 }}) for k = 1, . . . , K.

The above review shows that DUSTM is simple to use and
well suited to rapidly time-varying channels. As a tradeoff for
these advantages, DUSTM suffers from an error performance
penalty of 3dB compared to its coherent counterpart [4]. In the
next section, we propose an extended DUSTM scheme that can
reduce this penalty effectively.

3. EXTENDED DUSTM

The extended DUSTM (xDUSTM) scheme proposed here is based
on the assumption of moderately fast fading channels. Specifically
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we assume that the the channel coherence interval is no smaller
than (P + 1)T for some integer P ≥ 1, so that

Hp−1 � Hp � Hp+1 � . . . � Hp+P (12)

for p = 1, 2, . . .. Our aim is to exploit the quasi-static channel
property in (12) to improve error performance. The differential
encoding process of xDUSTM is a ‘length extended’ version of
DUSTM, and it is given as follows: For � = 1, 2, . . .,

C1+(�−1)P = C(�−1)P U1+(�−1)P , (13a)

C2+(�−1)P = C(�−1)P U2+(�−1)P , (13b)

...

C�P = C(�−1)P U�P , (13c)

with C0 initialized to be any unitary matrix unknown to the re-
ceiver. We call � the frame index, and P the frame size. Comparing
the fundamental transmission equations of the two schemes [c.f.,
(3) and (13)], we see that the xDUSTM scheme performs differen-
tial encoding on a frame-by-frame basis.

Again, for simplicity but without loss of generality, consider
the received signal frame [ Y0, Y1, . . . ,YP ]. Let H̃ = H0C0,
which equals H̃ = HpC0 for p = 1, . . . , P owing to (12). Then
the following signal model can be obtained:

Y0 = H̃ + V0 (14a)

Yp = H̃Up + Vp, p = 1, . . . , P (14b)

Following the deterministic blind ML treatment described in Sec-
tion 2, the ML detector of U1, . . . ,UP for the model in (14) is

{Ĥ, Û1, . . . , ÛP } =

arg min
H̃∈C

Mr×Mt ,
Up∈U,

p=1,...,P

‖Y0 − H̃‖2
F +

P�
p=1

‖Yp − H̃Up‖2
F (15)

Problem (15) is technically equivalent to a semi-blind ML detec-
tion problem [12, 14], where there are one pilot code block I fol-
lowed by a frame of signals U1, . . . ,UP . In the semi-blind detec-
tion context, generally it is found that error performance improves
as P increases [12, 14]. Hence, we expect that the xDUSTM
scheme for P > 1 should offer better error performance com-
pared to the conventional DUSTM. This will be shown to be true
in the simulation results in Section 4.

Now our goal is to solve the ML problem in (15). Like the
treatment described in the last section, Problem (15) can be shown
to be equivalent to (see; e.g., [14])

{Ûp}P
p=1 = arg max

Up∈U,
p=1,...,P

����Y0 +

P�
p=1

YpU
H
p

����
2

F

. (16)

To solve (16) exactly for a generic constellation set U , we may
need an exhaustive search which has a complexity proportional
to |U|P (where |U| is the cardinality of U). This computational
overhead is not affordable even for moderate P . To overcome this
hurdle, we consider the QPSK OSTBC constellation; cf., (11) and

(10). The objective function of (16) can be decomposed as

����Y0 +
P�

p=1

YpU
H
p

����
2

F

∝ 2Re

�
tr

� P�
p=1

Y0UpY
H
p

��

+ tr

� P�
p=1

P�
q=1

YpU
H
p UqY

H
q

�
(17)

By substituting (11) and (10) into (17), we show that the right hand
side of (17) can be simplified to

2sT
1:P f + s

T
1:P Gs1:P (18)

where s1:P = [ sT
1 , sT

2 , . . . , sT
P ]T ∈ {±1}KP ,

f =

�
��

f1
...

fP

�
�	 ∈ R

KP , (19)

G =

�
��

G11 . . . G1P

...
. . .

...
GP1 . . . GPP

�
�	 ∈ R

KP×KP , (20)

[fp]k = Re{tr{Y0XkY
H
p }}, k = 1, . . . , K (21)

[Gpq ]ki = Re{tr{YpX
H
k XiY

H
q }}, (22)

for k, i = 1, . . . , K. Therefore, the xDUSTM scheme with QPSK
OSTBCs can be reduced to a Boolean quadratic program

ŝ1:P = arg max
s1:P ∈{±1}KP

2sT
1:P f + s

T
1:P Gs1:P . (23)

Problem (23) is NP-hard. Fortunately recent advances in MIMO
detection have suggested that very effective algorithms are avail-
able for (23), at least practically. Specifically one can employ a
sphere decoding algorithm [10] to exactly solve (23), the com-
plexity of which can be very attractive in the average sense. Alter-
natively, suboptimal but computationally efficient algorithms for
(23) can be used. One such algorithm that is worth mentioning is
semidefinite relaxation (SDR) [11]. It has been illustrated that the
SDR algorithm provides near-ML performance with a polynomial-
time worst-case complexity (Note that exact solvers such as sphere
decoding do not guarantee polynomial-time worst-case complex-
ity). In this work, the sphere decoding and SDR alternatives are
both considered. For more details about the comparison of the two
alternatives, please read [12]. The application of SDR to (23) is
done by following the procedure in [11, 12]. As for sphere decod-
ing, the procedure is to first reformulate (23) as an integer least
squares problem, and then apply the sphere decoder to the refor-
mulated problem. The reformulation step can be found in [12].

It is straightforward that for each frame index �, the non-
coherent detection of s1+(�−1)P , . . . , s�P is done by applying the
aforementioned process to [ Y(�−1)P , . . . ,Y�P ].

4. SIMULATION RESULTS

In this simulation example, the code function C(.) is chosen to be
the Alamouti space-time code [7,8] for which the number of trans-
mitter antennas is Mt = 2. The MIMO channel coefficients are
zero-mean, i.i.d. Gaussian distributed. Figs. 1(a) and (b) show the
average bit error performance of the OSTBC xDUSTM scheme for
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various values of the frame size P . The numbers of receiver an-
tennas in Figs. 1(a) and (b) are Mr = 2 and Mr = 4, respectively.
The error rates of the conventional OSTBC DUSTM and coherent
OSTBC schemes are also plotted in the same figures. The figure
indicates that the error performance of xDUSTM improves with
P , which confirms our expectation discussed in the last section.
Moreover, for P = 8 (which is equivalent to 16 symbols), the er-
ror performance of xDUSTM is only about 1dB from that of the
coherent OSTBC scheme.

Figs. 1(a) and (b) also illustrate that the two ML implementa-
tions, namely the sphere decoder and the SDR algorithm, provide
very similar error performance.

14 16 18 20 22 24 26

10
−4

10
−3

10
−2

10
−1

DUSTM
Extended DUSTM
    SDR, P= 2
    Sphere decoding, P= 2
    SDR, P= 4
    Sphere decoding, P= 4
    SDR, P= 8
    Sphere decoding, P= 8
Coherent ML

SNR (2E{‖H‖2

F
}/No) in dB

A
ve

ra
ge

d
B

E
R

(a)

10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

DUSTM
Extended DUSTM
    SDR, P= 2
    Sphere decoding, P= 2
    SDR, P= 4
    Sphere decoding, P= 4
    SDR, P= 8
    Sphere decoding, P= 8
Coherent ML

SNR (2E{‖H‖2

F
}/No) in dB

A
ve

ra
ge

d
B

E
R

(b)

Fig. 1. BER performance for various frame sizes P . (a) Mr = 2;
and (b) Mr = 4.

5. CONCLUSION AND DISCUSSION

In this paper, an xDUSTM scheme has been proposed to reduce
the error performance penalty due to unknown channel state in-
formation. It does so by taking advantage of situations where the
channel coherence interval can be larger than 2 code blocks. The
main problem with using xDUSTM, namely that of the receiver

complexity has been addressed. Specifically we suggest to adopt
the structurally simple QPSK OSTBC designs at the transmitter
side, and to apply either the sphere decoder or SDR algorithm at
the receiver side. It is shown by simulations that xDUSTM can of-
fer better error performance than DUSTM, particularly when the
channel coherence interval is moderate.

We should add that this work was, in some way, inspired by
our semi-blind ML detection idea in [12].
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