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ABSTRACT

This paper describes an effective method for mobile 

location tracking and velocity estimation in a network-based 

wireless localization system. We propose a constrained least 

squares estimation algorithm for real-time tracking of the 

location and dynamic motion of a mobile user using TOA 

measurements. The tracking problem is formulated in a 

state-space framework and the constraints on system states 

are considered explicitly. Simulation results show that the 

proposed tracking algorithm can improve the accuracy 

through eliminating spurious position estimates. 

1. INTRODUCTION 

Over the past few years, mobile positioning systems have 

received great attention in both research and industry 

communities [1-3]. The applications of mobile positioning 

in wireless systems become absolutely essential as they play 

a key role in providing location based billing, intelligent 

transportation information and wireless emergency services 

(E-911).  As a matter of fact, it will be useful to be able to 

trace the mobility of a user forgetting about the privacy 

issue. The problem itself also generates many technical 

challenges. If the location as well as the movement of a 

mobile is known, additional services can be offered to 

subscribers. Especially in hierarchical cellular mobile 

communication networks, based on the mobile speed and 

moving direction, the information of mobility becomes of 

great assistance in efficient network resource management 

and in emergency situation, allowing real-time monitoring. 

These requirements have become one of the major driving 

forces of research activities on position tracking 

technologies. 

Mobile positioning involves a variety of technologies. The 

existing global positioning system (GPS) can provide a 

fairly reliable solution for localization. However, employing 

the GPS for mobile positioning would mean addition of 

hardware in the mobile station (MS), which is not a cost 

effective approach. Recently, many methods have been 

focused on utilizing the base station (BS) to locate the MS. 

The common location approaches are based on time-of-

arrival (TOA), received signal strength (RSS), time-

difference-of-arrival (TDOA), or angel-of-arrival (AOA).

To trace mobile locations, a variety of methods using signal 

strength, TOA or TDOA method were studied [4-8]. [4] 

proposed a tracking technique based on piecewise linear 

optimization to reduce the variation of location estimation. 

[5] developed a sequential-monte carlo method based on the 

auxiliary particle filter to perform speaker tracking using 

TDOA measurements. But the mobile velocity was not 

included in these tracking results. In [6-7], methods of 

position location and velocity estimation with signal 

strength measurement and TOA measurements were 

suggested. By using a linear recursive model of mobility 

and by smoothing via Kalman filter, an accurate estimated 

track can be achieved. A Kalman tracking method based on 

TDOA measurements for UMTS mobile location has been 

demonstrated in [8]. Moreover, in [9] and [10] adaptive 

schemes based on pattern recognition, hidden Markov 

models and neural networks methods have been employed 

to estimate the position of mobiles. However, all these 

methods ignore the constraints on the movement of mobile 

users. In practical situation, there exist many constraints on 

the movement, such as, the limitation on speed and 

geographical blockages. Typically, when a person is 

walking, their speed is limited to below 2m/s. So, the range 

and path of a mobile user are always confused by the 

environment, especially when the user is indoor or there are 

many obstacles around. Therefore, considering the 

constraints on movement can eliminate spurious position 

estimates and improve the accuracy of estimation. In this 

paper we propose a constrained estimation algorithm in the 

state-pace framework to deal with these system constraints. 

The rest of the paper is organized as follows. Section 2 

formulates a dynamic nonlinear mobility model on which 

our mobility tracing algorithm is based. Section 3 presents 

the constrained least squares estimation method. Section 4 

presents numerical results demonstrating the accuracy of the 

proposed method. Finally, conclusions are summarized in 

section 5. 

2. DYNAMIC MOBILITY STATE MODEL 
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2.1. Source model 

The problem considered here is that of tracking the position

of a particular mobile user in the XY-plane. It should be

stated, however, that the methodology can be easily

extended to perform a 3D tracking.

In order to develop time-varying movement patterns, we

model a moving object as a dynamic linear system. In the

following,  denotes the transpose of a vector or a matrix.

The mobile object’s state at time t is defined by a vector
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denotes the discrete-time index, denotes the sampling

period. The mobile position x satisfies the discrete

linear recursion 

kt

(t

t0tk

k

0Nk

t

)

)()()( 1 kkk tGwtFsts ,               (2) 0Nk

where F and are the following matrices:G

1000

0100

010

001

t

t

F G

t

t

0

0

00

00

])(),([)( 21 kkk twtwtw

2
2 IQ lI

, are the noise related to

mobile movement with state noise covariance matrix
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It is well know that A is Rayleigh distributed with

parameter  and expectation
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This allows for estimating from an estimator2 ˆ of

by setting [6].))(( ktAE /2ˆ2ˆ 2

2.2. Measurement model 

From the viewpoint of geometric location approach, time of 

arrival (TOA) measures can be used to estimate the position 

of the mobile object at any time instant. So, we use the time

sequence of TOA measures to perform position tracing and

velocity estimation for mobile positioning.

It is assumed that all measurements we utilize for mobile

location come from line-of-sight (LOS) propagation. Let 
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be the mobile user’s 

position and velocity to be determined at discrete time .

is the known coordinate of the ith base station (BS),

kt

, where M is the total number of receiving 

LOS BSs. The distance between the mobile user and the ith

BS at time , which is denoted by , is given bykt )( ki td
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Obviously, the distance is a nonlinear function of .)( kts

At time , the measured distance vector relating the true 

distance ,
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id )( kt Mi ,2,1 , and the mobile user’s position 

is modeled as )( kts
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)( ktv is the measurement noise related to base stations with

measurement noise covariance .R

The sate-space model relating the measurement Y  and the

state s  takes as the following form:
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3. MOBILITY TRACKING ALGORITHM 

If a mobile object moves within a short distance, the route 

could be approximated by a straight line. Although arbitrary

location technique could be used to estimate the mobile

location, these estimated locations are always not exactly

the mobile position, i.e. the X-Y components of the position 

coordinates are both noisy [7]. Therefore, it is not proper to 

derive the fitted straight line using linear regression. In this 

section, a constrained least squares (LS) estimation method

is used to track the position of the mobile user. 
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We start our estimation process at time 0k with an

estimate of the mobile user position and an initial estimated

value . An initial estimation of the mobile user’s

position is provided by the TOA techniques.

At each time step , the optimal estimated state is computed

by solving the following optimization problem, equation (6). 
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We assume that the matrices Q , and are symmetric

positive definite. They can be chosen as the covariance

matrices of disturbance Q , and estimate error s

R
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The pair ( summarizes the prior information at 

time and is part of the data of the state estimation

problem. A reasonable choice for the initial guess of s

is
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where is the first estimated position and the

velocity is assumed zero initially. Assume the solution to (6)

at time t is the unique pair . At succeeding 

time steps we can update the prior information  using

the sate-space model (5), and the matrix can be obtained

by solving the extended Kalman filter covariance equation

subject to the initial condition [11].
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Note that the equation (6) is a constrained optimization

problem. The optimum solutions should satisfy the system

dynamic (6-2) and the system constrains (6-3). Equation (6-

3) represents the constraints on the system state s and

disturbance . The constraints on the state w s are imposed so 

that the estimated position cannot be outside the known

range and the velocity of mobile user is restricted. The 

constraints on w mean the acceleration varies in a limited

range. Conceptually these constraints are reasonable

because there is a limit to how far a mobile user can move in 

a given time interval. Therefore, the constraints on mobile

user movement can eliminate the spurious or ridiculous

estimates and improve the accuracy of the estimation results. 

As a matter of fact, if we could have access to the 

geographical on environment information, for instance,

possible blocked in front of the moving path, additional

constraints can be built in real time. It will improve the

localization accuracy. 

4. SIMULATION EXAMPLE

In our numerical experiments, random mobile trajectories

are generated by Matlab using the dynamic state model

given in (5). We consider a relevant area of 6×6 km with 3

base stations. This condition can be considered as 

constraints on mobile position. The mobile moves from the

left to the right margin with speed about 15m/ s. The 

movement trajectory is depicted in Fig. 1. The sampling

interval is set to  and the total  sample

points are obtained within the duration of 15 minutes. For 

the estimation of Q , we choose an average 

acceleration as 0.5m/s2 and the estimated  is 

calculated from (4). The covariance of measurement noise 

is chosen to be 22500. This corresponds to a standard

deviation of approximately 150m per measurement. The

initial value of P  is 

st 3 300k
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seems to be a reasonable upper bound for the variance of the 

initial velocity of a mobile.
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The static least squares estimation, extended Kalman filter

(EKF) described in [6, 8] and the proposed method are used

to estimation the mobile position. Fig. 2 shows the

estimation results of the static least squares method. The

results show strong irregular variations and many estimation

vales overrun the constrained condition, which is

unreasonably. Fig. 3 shows estimated trajectories obtained

by EKF and the proposed algorithm. The solid line is the 

actual trajectory, dash line is the EKF estimate results and 

dot line denotes the constrained LS estimate results. The

results demonstrate that EKF has a poor performance,

particularly when there are sharp or sudden changes in 

moving direction. On the other hand, the constrained least 

squares method can guarantee that all the estimated values 

will locate in the constrained range.

We use root mean squared error (RMSE) as a figure of merit

to compare a given trajectory { and its estimated

trajectory { ˆ,ˆ
n yx

The values of RMSE calculated by the static LS estimation,

EKF and our proposed constrained LS method are 352.26, 

131.16 and 78.52, respectively. It can be seen that the 

deviation of the estimation results by the constrained LS 

method is less than that obtained by EKF method. It is 

obvious that the proposed position method has the best 

performance and gives the most satisfactory tracking 

capability. Fig. 4 shows the estimation results of the velocity. 

Fig.1. Base stations and the mobile’s trace 
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Fig.2. The estimated position obtained by using the 

static least squares method

Fig.3. The estimated trajectory by using EKF

and our proposed method

Fig.4. The estimated velocity (m/s) by using 

the proposed method

5. CONCLUSION 

In this paper, we describe a real-time constrained least

squares estimation algorithm for tracking the position in 

cellular network using TOA measurements. A dynamic

mobile model is used to describe the movement. A series of

TOA measurements are used to track the mobile user’s

position via a constrained least squares method. By solving 

a constrained optimization problem, we can obtain the 

object’s trace, which satisfies the system constraints. This 

algorithm can guarantee that the estimated trajectory does

not go out of the given range and the estimated velocity and

acceleration locate in a reasonable interval. By using the

proposed method the spurious estimates can be eliminated

and an accurate estimated trace is obtained. 
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