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ABSTRACT
In this paper, we investigate the performance of positioning
algorithms in wireless cellular networks based on time differ-

ence of arrival (TDoA) measurements provided by the base

stations. The localization process of the mobile station re-
sults in a non-linear least squares estimation problem which

cannot be solved analytically. Therefore, we use iterative al-

gorithms to determine an estimate of the mobile station po-
sition. The well-known Gauss-Newton method fails to con-

verge for certain geometric constellations, and thus, it is not

suitable for a general solution in cellular networks. Another
algorithm is the steepest descent method which has a slow

convergence in the final iteration steps. Hence, we apply

the Levenberg-Marquardt algorithm as a new approach in the
cellular network localization framework. We show that this

method meets the best trade-off between accuracy and com-
putational complexity.

1. INTRODUCTION

Positioning in wireless networks became very important in

recent years and services and applications based on accurate
knowledge of the location of the Mobile Station (MS) will

play a fundamental role in future wireless systems [1, 2, 3].

In addition to vehicle navigation, fraud detection, resource
management, automated billing, and further promising appli-

cations, it is stated by the Federal Communications Commis-
sion (FCC) that all wireless service providers have to deliver
the location of all Enhanced 911 (E911) callers with specified

accuracy [2].
MS localization using Global Navigation Satellite Sys-

tems (GNSSs) such as the Global Positioning System (GPS) or

the future European Galileo system deliver very accurate po-
sition information for good environmental conditions. These

systems may be a solution for future mass market applications

when the problem of high power consumption is resolved and
economic aspects are reduced. But nevertheless, the perfor-

mance loss in urban or indoor areas can be dramatical.

Therefore, in this paper we concentrate on determination
of the MS location by exploiting the already available re-

sources of cellular networks. Generally, this localization pro-
cess is based on measurements in terms of Time of Arrival

(ToA), Time Difference of Arrival (TDoA), Angle of Arrival
(AoA), and/or Received Signal Strength (RSS) [2], provided
by the Base Stations (BSs). We will focus on processing

TDoA measurements which is also part of the 3GPP standard

where it is denoted as Observed TDoA (OTDoA) [4].
To cope with the resulting non-linear estimation problem

where no analytical solution is possible, we describe the it-

erative Gauss-Newton (GN) and the Steepest Descent (SD)
[1, 5] method as standard solutions for the occurring non-

linear least squares problems in the next sections. Finally, we

propose the iterative Levenberg-Marquardt (LM) algorithm
[6, 7] as a new method in the context of positioning in cel-

lular networks. Simulation results show the potential of LM
with the best trade-off between accuracy and complexity. Fur-

thermore, a performance comparison with the non-iterative

Chan-Ho (CH) method [8] is given.
Throughout this paper, vectors and matrices are denoted

by lower and upper case bold letters, and random variables

are written using sans serif font. The matrix In is the n × n
identity matrix, the operation ‘⊗’denotes the Kronecker prod-

uct, E {·} expectation, (·)T transpose, and ‖·‖2 the Euclidean

norm.

2. SYSTEM MODEL

The time synchronized BSs are organized in a cellular net-

work with cell radius R according to Figure 1. The MS

is located at x = [x, y]T and only the NBS nearest BSs at
xν , ν ∈ {1, 2, . . . , NBS} are used for positioning. The dis-

tance between the BSs and the MS is given by

rν (x) = ‖xν − x‖2 =
√

(xν − x)2 + (yν − y)2. (1)

In the following, we treat distances and propagation times as
equivalent, and thus, the TDoAs for BS ν w.r.t. BS 1 can be

written as
dν,1 (x) = rν (x) − r1 (x), (2)

where — without loss of generality — we use BS 1 as the

reference BS. The at most NBS−1 linear independent TDoAs
compose the vector

d (x) = [d2,1 (x) , d3,1 (x) , . . . , dNBS,1 (x)]T , (3)
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Fig. 1. TDoA positioning in cellular networks, NBS = 4

and the corresponding TDoA measurements are given by

d = [d2,1, d3,1, . . . , dNBS,1] , (4)

based on the measurement model

d = d (x) + n, (5)

where n = [n2,1, . . . , nNBS,1]
T

is zero-mean Additive White
Gaussian Noise (AWGN) with covariance matrix Σn =
E

{
nnT

}
.

3. POSITIONING ALGORITHMS

In this section, the considered algorithms for wireless posi-
tioning using TDoA are described. With the system model

introduced in Section 2 and following the weighted non-linear

least squares approach [3, 5] we minimize the cost function

ε (x) = (d − d (x))T Σ−1
n (d − d (x)) (6)

w.r.t. the unknown MS position x yielding

x̂ = argmin
x

ε (x) . (7)

In the general case, there exists no closed-form solution to the

non-linear two-dimensional optimization problem given by

(7), and hence, iterative approaches are necessary described
in the following.

3.1. Gauss-Newton

The GN algorithm [3, 9] linearizes the system model in (5)
about some initial value x(0) yielding

d (x) ≈ d
(
x(0)

)
+ Φ (x)

⏐⏐⏐
x=x(0)

(
x − x(0)

)
, (8)

with the elements of the (NBS − 1) × 2 Jacobian matrix

Φ (x) = ∇T
x ⊗ d (x) =

⎡
⎢⎢⎢⎢⎣

x−x2
r2

− x−x1
r1

y−y2
r2

− y−y1
r1

x−x3
r3

− x−x1
r1

y−y3
r3

− y−y1
r1

...
...

x−xNBS
rNBS

− x−x1
r1

y−yNBS
rNBS

− y−y1
r1

⎤
⎥⎥⎥⎥⎦,

(9)

where ∇x =
[

∂
∂x , ∂

∂y

]T

. Afterwards, using (8) and (6), the

linear least squares procedure is applied resulting in the iter-
ated solution

x(k+1) = x(k) +
(
ΦT

(
x(k)

)
Σ−1

n Φ
(
x(k)

))−1

· ΦT
(
x(k)

)
Σ−1

n

(
d − d

(
x(k)

))

= x(k) + A(k),−1g(k).
(10)

The GN algorithm provides very fast convergence and accu-
rate estimates for good initial values. For poor initial val-

ues and bad geometric conditions the algorithm results in a

rank-deficient, and thus, non-invertible matrix A(k) for cer-
tain constellations of MS and BSs. In this case the algorithm

diverges.

3.2. Steepest Descent

Contrary to GN, the SD algorithm [3] is a gradient based pro-

cedure with search direction ∇xε (x) and step size µ yielding

x(k+1) = x(k) − µ(k)ΦT
(
x(k)

)
Σ−1

n

(
d − d

(
x(k)

))

= x(k) − µ(k)g(k).
(11)

The easiest but suboptimum way to find a step size is to

choose a constant µ(k) = µ for all iteration steps. The op-

timum step size for each iteration step k can be determined
using an optimum line search procedure which is given by

the non-linear one-dimensional optimization problem

µ(k) = argmin
µ

ε
(
x(k) − µg(k)

)
. (12)

We refer to this method as SD with optimum Line Search
(SDLS). Due to the high computational effort for evaluating
(12), we consider this procedure only for performance com-

parison with the SD method based on a constant step size.

Main drawbacks of SD methods are the possibility for run-
ning in local minima and slow convergence in the final itera-

tion steps.

3.3. Levenberg-Marquardt

To cope with the problems of GN and SD (robustness and
slow convergence, respectively), we present a method intro-

duced by Levenberg [6] and Marquardt [7] for minimizing
the cost function (6). We newly propose this algorithm in the
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context of positioning problems. It is based on a damped GN

procedure given by

x(k+1) = x(k) +
(
ΦT

(
x(k)

)
Σ−1

n Φ
(
x(k)

)
+ λ(k)I2

)−1

· ΦT
(
x(k)

)
Σ−1

n

(
d − d

(
x(k)

))

= x(k) +
(
A(k) + λ(k)I2

)−1

g(k).

(13)

The damping parameter λ(k) makes sure that the belonging
matrix — in comparison to GN — can always be inverted

yielding a much more robust implementation. The damping

parameter and the MS location estimate can be calculated us-
ing the computational efficient Algorithm 1. It is based on

suboptimum line search provided by the additional parame-

ter ρ(k) processing actual and previous estimates. The non-
critical initialization parameter τ influences the step size in

the first iteration and is set to τ = 5 for the considered sce-

narios. Note, that for λ(k) = 0 we obtain the GN solution
whereas for

∣∣λ(k)
∣∣ � 1 we have a SD behavior. LM provides

fast convergence and is very robust against inaccurate initial
values.

Algorithm 1 Levenberg-Marquardt

1: k ← 0
2: ν(k) ← 2
3: A(k) ← ΦT

(
x(k)

)
Σ−1

n Φ
(
x(k)

)
4: g(k) ← ΦT

(
x(k)

)
Σ−1

n

(
d − d

(
x(k)

))
5: λ(k) ← τ max

{[
A(k)

]
i,i

}
6: repeat
7: h(k) ← (

A(k) + λ(k)I2

)−1
g(k)

8: x(k+1) ← x(k) + h(k)

9: ρ(k) ← ε
(
x(k)

) − ε
(
x(k+1)

)
h(k),T

(
λ(k)h(k) + g(k)

)
10: if ρ(k) > 0 then
11: A(k+1) ← ΦT

(
x(k+1)

)
Σ−1

n Φ
(
x(k+1)

)
12: g(k+1) ← ΦT

(
x(k+1)

)
Σ−1

n

(
d − d

(
x(k+1)

))
13: λ(k+1) ← λ(k) max

{
1
3 , 1 − (

2ρ(k) − 1
)3

}
14: ν(k+1) ← 2
15: else
16: A(k+1) ← A(k)

17: g(k+1) ← g(k)

18: λ(k+1) ← λ(k)ν(k)

19: ν(k+1) ← 2ν(k)

20: end if
21: k ← k + 1
22: until convergence

4. SIMULATION RESULTS

We test the proposed algorithms in a cellular network with

cell radius R = 3 km and assume constant noise power for all
involved links from the BSs to the MS, i.e., Σn = σ2

nINBS−1.
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Fig. 2. CRLB (x) for σn = 0.2 km, R = 3 km, NBS = 3

The performance bound is given by the Cramer-Rao
Lower Bound (CRLB) [5] defined as

CRLB (x) =
√

trace
(
ΦT (x)Σ−1

n Φ (x)
)−1

(14)

for each MS position. Figure 2 shows CRLB (x) using NBS =
3 for positioning. It can be seen, that near the BSs and on the

direct links of neighboring BSs the positioning performance is
restricted due to geometric constellation. Inside the polygon

spanned by the involved BSs we can expect more accurate
results. Clearly, for increasing NBS the geometric conditions

will change.

Nevertheless, we are interested in the positioning accu-
racy for all possible MS locations in the cellular network.

Thus, we introduce CRLB = Ex {CRLB (x)} as mean value

of the bound for the whole network. We compare this bound
with the achievable Root Mean Square Error (RMSE) for the

algorithms defined as

RMSE =
√

Ex

{
‖x − x̂‖2

2

}
≥ CRLB (15)

and averaged over several MS positions and noise realiza-

tions, where x̂ = x(K) is the estimate provided by the al-

gorithms after K iteration steps.
In Figure 3 the performance of the proposed algorithms is

analyzed for NBS = 3 and σn = 0.2 km. Initial value for the

iterative algorithms is the mean value of the positions of all
involved BSs, i.e.

x(0) =
1

NBS

NBS∑
ν=1

xν . (16)

GN diverges for bad geometric conditions (cf. Figure 2) and

poor initial values. Therefore, in these cases the resulting

estimate is set to x̂ = x(0) to show the loss w.r.t. CRLB.
Anyway, for perfect conditions GN provides the fastest con-

vergence. The LM algorithm converges after KLM = 5 it-
eration steps and reaches nearly CRLB. SD with µ = 0.48
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and even SDLS have a much slower convergence compared to

LM and no improvement can be achieved after KSD = 22 and

KSDLS = 12 iterations. Additionally, in Figure 3 the needed
FLoating point OPerations (FLOPs) as measure for computa-

tional complexity are depicted for the algorithms. Obviously,

LM offers the best trade-off between performance and com-
plexity. Although the number of FLOPs for each iteration step

using LM is higher than for using SD, the FLOPs for deliv-

ering one MS estimate are much smaller due to the reduced
number of required iterations until convergence. For this sce-

nario, we achieve about 60% reduction of complexity. Note,
that the FLOPs for LM are based on a worst case scenario

with ρ(k) > 0 (cf. Algorithm 1) for all iteration steps.

Finally, Figure 4 shows a performance comparison of the

LM algorithm for various numbers of involved BSs. It can

be seen, that the deviation from CRLB is very small, even
for NBS = 3 and high noise power. The results are com-

pared with the non-iterative algorithm invented by Chan and

Ho [8]. This is a three-step procedure achieving CRLB for
low noise power, but with restricted accuracy for higher noise

power. The number of required FLOPs is slightly smaller than
the FLOPs for LM with KLM = 5, but we can observe that

the performance of the Chan-Ho (CH) method — especially

in the most interesting case of NBS = 3 — is considerably
worse.

5. CONCLUSIONS

In this paper, we investigated the performance of mobile sta-

tion positioning in cellular networks using TDoA measure-

ments. The standard Gauss-Newton algorithm diverges for
inaccurate initial values and the steepest descent method has

a poor convergence behavior in the final iteration steps. To

avoid these drawbacks, we propose to use the Levenberg-
Marquardt algorithm as a new approach in the positioning

framework. Simulation results show that this method is suit-
able to estimate the mobile station location with high accu-
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Fig. 4. RMSE vs. σn for LM and CH algorithm, R = 3 km

racy and low complexity. In the case of 3 involved base sta-
tions for positioning Levenberg-Marquardt is very close to the

Cramer-Rao lower bound and a complexity reduction of about

60% can be achieved.
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