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ABSTRACT

In this work, we propose and efficient structure for decision
feedback equalization (DFE). The proposed structure makes
use of the power-of-two quantization concept to completely
eliminate the real multiplications in the DFE’s update equa-
tions. The resulting structure is shown to substantially re-
duce the complexity of the DFE without any loss of per-
formance. The study includes performance analysis of the
proposed method and closed form expressions for the mean
square errors.

1. INTRODUCTION

Decision feedback equalization (DFE) is a commonly used
practice to mitigate the effect of Inter-symbol interference
(ISI) in communication systems [1]. However, one of the
main challenges in using DFE in high speed applications is
the computation burden it involves.
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Fig. 1. Structure of the Decision Feedback Equalizer.

Fig. 1 shows the structure of the DFE. The main compo-
nents of the DFE are the feed forward filter (FFF), feedback
filter (FBF), and the decision device function D{}. The co-
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efficients of the DFE are updated according to the recursion

f i = f i−1 + µr∗i+M−1e(i) (Mf × 1) (1)

bi = bi−1 + µx̂∗i−1e(i) (Mb × 1) (2)

where

z(i) = f iri + bix̂i (3)

x̂(i) = D{z(i)} (4)

e(i) = x̂(i − q) − z(i) (5)

(6)

The vectors f i and bi denote the coefficients of the FFF and
FBF respectively. The vectors ri (1×Mf ) and x̂i (1×Mb)
contain the latest Mf and Mb values of the received signal
r(i) and the decision samples x̂(i) respectively. µ is the
step-size of the adaptation while q is the equalizer’s delay
and M = Mb + Mf . The star (∗) indicates the conjugate
transpose. If we denote

ui
∆
= [ri+M−1 x̂i−1] (7)

wi
∆
= [f i; bi] (M × 1) (8)

d(i)
∆
= x̂(i − 1) (9)

Then, we can write the DFE equations in the standard LMS
form

e(i) = d(i) − uiwi−1 (10)

wi = wi−1 + µu∗
i e(i). (11)

One way to reduce the complexity of DFE is by avoid-
ing the multiplication u∗

i e(i) that appears in the equalizer
recursion (11). This can be achieved by rounding the ele-
ment e(i) to its nearest power-of-two value. In this case, the
binary representation of the quantized values will have only
one bit that is “1” and the rest are zeros. This means that the
multiplication can be attained by, at most, simple shift oper-
ations of the vector u∗

i . In this way, real multiplication can
be completely avoided in the recursion. This technique is
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known as the power-of-two quantization (PTQ). This tech-
nique was successfully adopted in reducing the complexity
of linear equalizers [2, 3, 4]. In these articles, the PTQ was
shown to substantially reduce the complexity of the equal-
izer without major loss in performance.

In this work, we consider the implementation of the PTQ
technique to reduce the complexity of the DFE. The objec-
tive is to eliminate the expensive multiplication operations
from the recursion of the equalizer without compromising
its performance.

2. POWER-OF-TOW QUANTIZATION

The power-of-two quantization for a given signal x can
be mathematically expressed as [5]

QPTQ(x) = 2�log2|x|�sign(x) (12)

where �.� denotes the floor operation. Fig. 2 shows the
block diagram representation of this quantizer. The signum
function carries the sign information of the input while the
magnitude information is passed through log-2, linear quan-
tization, and exponential blocks sequentially. The linear
quantizer produces the nearest integer value less than its in-
put sample.
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Fig. 2. Block diagram representation of the power-of-two
quantizer.

The PTQ in (12) assumes infinite number of bits for the
linear quantizer. Another finite bit version is given by [2]

QPTQ(x) =

⎧⎪⎨
⎪⎩

sign(x) |x| ≥ 1

2�log2|x|� 2−B+1 ≤ |x| < 1

0 |x| < 2−B+1

(13)

where B is the number of bits assigned to the quantization.
In [3] and [4], the third line in this expression is changed to

QPTQ(x) = 2−B+1sign(x) |x| < 2−B+1 (14)

to avoid the adaptation dead-zone when |x| ≤ 2−B+1.

3. STRUCTURE OF THE PROPOSED PTQ-DFE

In this work we implement the PTQ concept to the con-
ventional structure of the DFE shown in Fig. 1 and repre-
sented by the recursions (1) and (2). For ease of analysis,
the linear quantizer in this study uses rounding to nearest
integer instead of the floor operation.

The error signal e(i) is quantized using the PTQ and the
update equations of the DFE coefficients become

f i = f i−1 + µr∗i+M−1QPTQ{e(i)} (Mf × 1)(15)

bi = bi−1 + µx̂∗i−1QPTQ{e(i)} (Mb × 1) (16)

The introduction of the PTQ converts the multiplication op-
eration between the error signal e(i) and the regressor vec-
tors r and x̂ into simple shift operations. If µ is chosen as
power-of-two, then the recursions can be digitally imple-
mented without any multiplications. In the LMS standard
format, we can write this recursion as (utilizing the trans-
formation (7-9))

e(i) = d(i) − uiwi−1 (17)

wi = wi−1 + µu∗
i QPTQ{e(i)} (M × 1). (18)

4. PERFORMANCE ANALYSIS OF THE PTQ-DFE

Consider a power-of-two quantizer in the form shown
in Fig.2. It was proven in [6, 7] that the PTQ can be repre-
sented by the following input-output expression

y = Kx (19)

where K is a random scalar gain defined as

K
∆
= 2eQ . (20)

and eQ is the quantization noise of the quantizer inside the
PTQ. This noise is assumed uniform within the interval [−∆,∆],
where ∆

(
= 1

2B+1

)
is half the quantizer’s step-size. Conse-

quently, the first and second moments of the gain K can be
readily computed as

EK
∆
= E{K} =

1

2∆ ln(2)

(
2∆ − 2−∆

)
(21)

EK2

∆
= E{K2} =

1

4∆ ln(2)

(
22∆ − 2−2∆

)
(22)

Using this result, we can rewrite the PTQ-DFE update
equation (18) as

wi = wi−1 + µu∗
i K(i)

[
uiwopt + v(i) − uiwi−1

]
. (23)

where wopt is an (M×1) optimal weights vector and v(i) is
the measurement noise with variance σ2

v . Subtracting wopt

from both sides leads to

w̃i = [I − µu∗
i uiK(i)] w̃i−1 + µu∗

i K(i)v(i) (24)
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where the weight error vector w̃i is defined as

w̃i
∆
= wi − wopt. (25)

This structure is similar to that of traditional LMS except
with the introduction of the gain K. Therefore, we can bor-
row the same methodologies of the LMS analysis to inves-
tigate the convergence of the proposed scheme (see, for ex-
ample, [8]). In the analysis, the following assumptions are
used

1. The quantization noise eQ(i) is assumed independent
of the quantizer input e(i). In this case, the random
gain K(i) can also be assumed independent of e(i).
This assumption is reasonable when B is sufficiently
large (say B ≥ 4).

2. The additive noise v(i) is zero-mean gaussian noise.

3. The input ui is stationary with autocorrelation matrix
R.

Due to the limitation on the paper size, we state directly
the following results

Lemma 1 (Convergence in the mean) The recursion (15)
and (16) converges asymptotically in the mean if

0 < µ <
2

λmaxEK

. (26)

where λmax is the maximum eigenvalue of R.

Lemma 2 (Convergence in the mean square) Consider the
PTQ-LMS recursion (15) and (16). If the step-size of the re-
cursion is chosen such that

0 < µ <
2EK

λmaxEK2

then the recursion converges in the mean square to the quan-
tity

C∞ =
ασ2

v

1 − c
[2I − αR]

−1 (27)

where c =
∑M

j=1

αλj

2−αλj
, and {λj} are the eigne values of

R, and

α
∆
= µ

EK2

EK

. Furthermore, the steady state MSE is given by

MSEss = σ2
v +

cσ2
v

1 − c
(28)

while the expression for the excess MSE is

MSEex =
cσ2

v

1 − c
(29)

and therefore, the MSE misadjustment is given by

Ω =
c

1 − c
. (30)

5. SIMULATION

In this section, the performance of the proposed PTQ-
DFE is investigated via simulation and results are compared
with the analytical findings. In simulation, a 4-QAM com-
plex signal is transmitted through a 4-tap channel with im-
pulse response

h = [0.5 1.2 1.5 − 1] (31)

The additive noise is complex Gaussian noise with zero mean.
The number of taps Mf and Mb for the DFE are chosen as
20 and 2 respectively. The equalizer’s delay q is set to 10
samples and the adaptation step size µ is chosen as 2−10. In
the training mode, 200 samples are used while 10000 sam-
ples are used in the decision-directed mode.

Fig. 3 shows typical learning curves for the proposed
PTQ-DFE implementing the three PTQ types given by (12),
(13) and (14), averaged over 100 runs and with noise vari-
ance of -30dB. The conventional (non-quantized) LMS-based
DFE is also included for comparison purpose. We notice
that the four curves are almost coinciding with each other
indicating a similar learning performance between the PTQ-
DFE systems and the conventional DFE. In Fig. 4, typical
constellation setup obtained using the proposed PTQ-DFE
with SNR=10dB is shown, including source, transmitted,
received, and equalized signals.
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Fig. 3. Learning curve performance for the PTQ-DFE tech-
niques compared to that of conventional DFE (results are
averaged over 100 runs).

The bit error rate (BER) is also measured under varying
SNR for both proposed PTQ-DFE and conventional DFE.
Results are shown in Fig. 5. We notice again the similarity
between the BER performance of the PTQ-DFE and that of
the conventional DFE. In Fig. 6, the simulated steady state
MSE is plotted as a function of SNR and results are com-
pared with the analytical findings from (28). In this case,
both simulated and analytical results are matching.
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Fig. 4. Typical constellations of a 4-QAM signal going
through a PTQ-DFE with SNR=10dB.
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Fig. 5. The BER versus SNR performance for the PTQ-DFE
compared to the conventional DFE.

6. COMPUTATION COMPLEXITY

As mentioned earlier, the main advantage of the PTQ
concept is that it completely eliminates the need for real
multiplications in digital implementation of the DFE update
equations (15) and (16) by quantizing the error signal e(i)
into a power-of-two value. The number of real multiplica-
tions that will be saved per iteration is Mf + Mb for real
and 4Mf + 4Mb for complex signaling respectively. For
example, let Mf = 20 and Mb = 2 then the number of real
multiplications saved for 104 iterations will be 22×104 and
88 × 104 for real and complex signaling respectively.

7. CONCLUSION

In this paper, an efficient structure for the decision feed-
back equalizer is proposed. The complexity reduction is at-
tained via the utilization of power-of-two quantization tech-
niques. These techniques completely eliminate the need
for real multiplication in the adaptation algorithm of the
equalizer. It is shown through both analysis and simulation
that this reduction in complexity is attained with almost no
degradation in the equalization performance. The conver-
gence in both mean and mean square of the proposed algo-
rithm was discussed and expressions for the mean square
error were derived.
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