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Abstract—Constrained formulations of decision feedback
equalizer (DFE) schemes arise whenever its intrinsic error
propagation phenomenon must be reduced. In this context, the
solution to the constrained energy DFE is shown to be closely
related to the so-called Kalman gain vector usually observed in
recursive least-squares algorithms, except that here the desired
shift structure that allows for a fast algorithm no longer exists.
Still, in this paper we show how to properly correct for this
discrepancy and provide a fast recursion for computing the
constrained DFE coefficients.

I. INTRODUCTION

It is well known that minimum mean squared (MMSE)

decision feedback equalizer (DFE) schemes exhibits an inher-

ent error propagation phenomenon, due to the assumption of

correct decisions in its formulation. One way to diminish the

effect of wrong decisions is to pose appropriate constraints on

the feedback filter, either via energy or magnitude limiting

criteria [1],[2]. As a result, the DFE performance in the

former case can be shown to achieve a controlled tradeoff

between error propagation and noise enhancement effects,

so that further requirements on error control coding can be

relaxed.

Now, in channel based equalization schemes, a fast algo-

rithm for computing the equalizer coefficients is crucial. For

this purpose, we have recently introduced a new approach

for computing the optimum DFE coefficients which bypasses

several structural and complexity difficulties inherent to prior

arts (see [3] and the references therein). As a fallout, the

solution to the feedforwad coefficients in this case can be

interpreted as the so-called Kalman gain, which in turn can
be efficiently computed via well known fast transversal RLS

techniques [5]. This is a consequence of formulating the DFE

cost function as a linear estimation problem, as opposed to

a constrained cost. In this case, the feedback filter can be

obtained simply by resorting to fast convolution techniques.

In the constrained energy DFE considered in this paper, the

optimal feedforward filter can be similarly shown to depend on

the Kalman gain, except that here the desired shift structure

leading to an imediate fast algorithm implementation (as in

the unconstrained DFE case) no longer exists. Still, we shall

show how to compensate for this discrepancy and provide an

efficient algorithm to compute the optimum DFE filters in a

SISO scenario. This is accomplished in 3 steps:

1) First, we identify which variables among the Kalman

gain recursions are intimately affected when shift struc-

ture suddenly breaks off;

2) Secondly, we show how to properly correct these vari-

ables so that the corresponding Kalman gain vector can

be efficiently propagated;

3) Finally, we provide additional recursions in order to

obtain the feedforwad filter from the Kalman gain vector.

The feedback filter can be easily obtained via fast and

stable convolution techniques.

Applications of the proposed method include fast varying

channel estimate based structures in communication systems,

as well as magnetic recording channels.

II. FINITE-LENGTH DFE FORMULATION

The constrained energy DFE cost function is a regularized

formulation of the conventional DFE problem. That is, by

collecting the tap coefficients of both T (z) and B(z) of Fig. 1
into vectors, say, {t, b}, we aim to minimize1

ξ = E|x(n − δ) − x̂(n − δ)|2 + b∗Ab , (1)

where x̂(n − δ) is the delayed input signal estimate prior to
the decision, and A = diag{�0, �1, . . . , �L−1}, represents the
energy constraint.
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−
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x̂(n − δ)

Fig. 1. Discrete symbol-spaced scalar DFE model.

Thus for a unit power i.i.d. input sequence, and noise autocor-

relation matrix Rv , the minimization of (1) (assuming correct

decisions) leads to the following solution:

topt = (Rv + H∗WH)−1h∗
δ (2)

bopt = (I + A)−1H̄topt (3)

For example, δ = M − 1 (usually set for various practical
channel and noise scenarios with fairly long feedforward

filters), yields the (N + M − 1) × M matrix

1We denote ∗ as complex conjugate transposition.
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H =

2
6666666666666664

h(0) 0 · · · 0
h(1) h(0) · · · 0

...
...

. . .
...

h(N − 1) h(N − 2)
. . . h(0)

0 h(N − 1)
. . . h(1)

...
...

. . .
...

0 0 · · · h(N − 1)

3
7777777777777775

,

a weighting matrix W , and

H̄ =

2
66666664

0 h(N − 1)
. . . h(1)

0 0
. . . h(2)

...
...

. . .
...

0 0 · · · h(N − 1)

3
77777775

, h∗

δ =

2
6664

h∗(N − 1)
h∗(N − 2)

...
h∗(0)

3
7775

III. FAST COMPUTATION OF THE FEEDFORWARD FILTER

Let us define the coefficient matrix

PN+M−1
∆
= (Rv + H∗WH)−1 .

where W
∆
= diag{µ0, µ1, . . . , µN} is a general weighting

matrix, with µi = (1 − 1/�i). The optimal solution for the
feedforward coefficients is then given by

topt
∆
= tN+M−1 = PN+M−1h

∗
δ . (4)

This quantity is closely related to the definition of the Kalman

gain vector used to update the optimal solution in a certain

regularized weighted RLS problem. More specifically, given

an (i+1)×M data matrix Hi and its corresponding coefficient

matrix PM,i, the (normalized) Kalman gain vector defined as

kM,i = PM,i−1h
∗
M,i can be time-updated according to the

following recursions (see, e.g., [6])2:

γ−1
M (i) = µ−1

i + hM,iPM,i−1h
∗
M,i , (5)

kM,i = PM,i−1h
∗
M,i , (6)

PM,i = PM,i−1 − kM,iγM (i)k∗
M,i , (7)

with the initial condition PM,−1 = R−1
v . Then, at the i-th

iteration, we have

tM,i = PM,ih
∗
δ .

Moreover, by associating PM,i and kM,i with a forward

estimation problem, its corresponding optimal solution, viz.,

wf
M,i, is recursively obtained as follows:

wf
M,i = wf

M,i−1 + kM,ifM (i)

where fM (i) is the corresponding a posteriori forward resid-
ual. The minimum cost of this problem is updated as

ξf
M (i) = ξf

M (i − 1) + γM (i)|αM (i)|2

2We indicate the order M in addition to the time index i (also refering to
the i-th row), since we will be dealing with order recursive relations.

where αM (i) is the a priori error related to fM (i) as

fM (i) = γM (i)αM (i)/µi .

Note that analogous relations hold similarly for the backward

estimation problem, with the quantities {wf
M,i, fM (i), αM (i)}

replaced by {wb
M,i, bM (i), βM (i)}. Now, multiplying Eq. (7)

from the right by h∗
δ , the optimal feedforward filter given by

(4) can be efficiently computed as

tM,i = tM,i−1 − r∗M (i)γM (i)kM,i (8)

with initial condition tM,δ = γM (δ)kM,δ , and where we have

defined the quantity

rM (i)
∆
= hM,δkM,i = hM,δPM,i−1h

∗
M,i (9)

Therefore, our main goal in the sequel is to obtain efficient

recursive relations for the variables {kM,i, γM (i)} and rM (i)
by relying on order updates and order downdates.

A. Fast Recursions for Weighted Problems

First, observe that a fast method for computing kM,i, and

hence γM (i), is not possible for general weighted problems. To
see this, let PM+1,i−1 be the augmented Ricatti variable (via

forward prediction) at time i− 1. Likewise, let P̆M+1,i be the

corresponding augmented matrix (via backward prediction) at

time i. Hence when Wi−1 = Wi, we have that

PM+1,i−1 = P̆M+1,i, (10)

so that the corresponding Kalman vector can be efficiently

time updated via consecutive order update and order downdate

steps:

kM,i−1 → kM+1,i−1︸ ︷︷ ︸
(1) order update

= k̆M+1,i → kM,i︸ ︷︷ ︸
(2) order downdate

(11)

(note that, at time i we work with two vectors, i.e., kM,i−1 and

kM,i, whereas the index i refers to the correponding i−1 and
i-th data matrix rows). Here, due to the different tap weighting
αi employed, we have Wi−1 �= Wi, so that, in general,

kM+1,i−1 �= k̆M+1,i. Now for the constrained problem of

this paper, we shall consider constant weights µi = µ, which
implies that WN assumes the following structure:

WN =

[
Iδ+1

µIN+M−δ−2

]

This means that up to iteration i = δ + 1, we have, from the
usual fast Kalman recursions, that kM+1,i−1 = k̆M+1,i. Since

exactly at time i = δ + 1 the underlying data matrix shift
structure is interrupted3, the question is then how to relate
{k̄M+1,i−1, k̆M+1,i}, and hence {γM+1(i − 1), γ̆M+1(i)},
from time i = δ + 2 onwards.

3Observe that even though row hδ+1 is weighted by α, it still holds that

kM+1,δ = k̆M+1,δ+1.

IV  470



B. Correction for kM+1,i

Suppose that we have computed kM,i
∆
= PM,i−1h

∗
M,i at

time i ≥ δ + 1, so that now we wish to compute kM,i+1
∆
=

PM,ih
∗
M,i+1 according to steps (1) and (2) in Eq. (11).

Moreover, let PM+1,i−1 be the order updated Ricatti variable

at time i ≥ δ + 1. In this case, we may write

P̆−1
M+1,i = P−1

M+1,i−1 + (µ − 1)h∗
M+1,δhM+1,δ

so that inverting this relation we arrive at

P̆M+1,i = PM+1,i−1 −
PM+1,i−1h

∗
M+1,δhM+1,δPM+1,i−1

1
µ−1 + hM+1,δPM+1,i−1h∗

M+1,δ

.

(12)

Thus multiplying both sides of (12) by h̆M+1,i+1 = hM+1,i,

we get

k̆M+1,i+1 = kM+1,i − rM+1(i)γ
h
M+1(i)tM+1,i−1 (13)

where we have defined the following variables:

tM+1,i−1
∆
= PM+1,i−1h

∗
M+1,δ (14)

rM+1(i)
∆
= hM+1,δPM+1,i−1h

∗
M+1,i (15)

= hM+1,δkM+1,i = t∗M+1,i−1h
∗
M+1,i (16)

γh
M+1(i)

∆
=

1
1

µ−1 + hM+1,δPM+1,i−1h∗
M+1,δ

(17)

A quick look onto Eq. (13) implies that 3 additional vector

recursions would be needed in order to obtain k̆M+1,i+1. That

is, one time-update for tM+1,i−1 [similar to (8)], its product

with rM+1(i)γ
h
M+1(i), and the inner product in (15). However,

this can still be acomplished by using only 2 additional vector

recursions, via an order update for tM,i−1. To see this, first

consider the order update for the Kalman gain:

kM+1,i =

[
0

kM,i

]
+

α∗
M (i)

ξf
M (i − 1)

[
1

−wf
M,i−1

]
(18)

Likewise, consider the order update for PM+1,i−1:

PM+1,i−1 =

[
0 0
0 PM,i−1

]
+

1

ξf
M (i − 1)

[
1

−wf
M,i−1

]
[·]

∗

(19)

(the notation [·] signifies “repeat the previous term”). Substi-
tuting (19) into Eq. (14), we get

tM+1,i−1 =

[
0

tM,i−1

]
+

αh∗
M (i − 1)

ξf
M (i − 1)

[
1

−wf
M,i−1

]
(20)

where we have defined

αh
M (i − 1)

∆
= hM+1(δ + 1) − hM,δw

f
M,i−1 (21)

For compactness of notation, we denote the quantity

sM+1(i)
∆
= rM+1(i)γ

h
M+1(i) , (22)

so that substituting Eqs. (18) and (20) into (13), we obtain

k̆M+1,i+1 =

[
0

kM,i − sM+1(i)tM,i−1

]
(23)

+
α∗

M (i) − sM+1(i)α
h∗
M (i − 1)

ξf
M (i − 1)

[
1

−wf
M,i−1

]

Now, further definition of the following auxiliary quantities

k′
M,i

∆
= kM,i − rM+1(i)γ

h
M+1(i)tM,i−1 (24)

τM (i)
∆
= α∗

M (i) − rM+1(i)γ
h
M+1(i)α

h∗(i − 1)

allows us to write (23) more compactly as

k̆M+1,i+1 =

[
0

k′
M,i

]
+ τM (i)

ζf

M
(i−1)

[
1

−wf
M,i−1

]

Also, note from recursions (22) and (23), that we still

need to obtain fast recursions for the scalar variables

{rM+1(i), γ
h
M+1(i), α

h
M (i)}. We do so as follows.

(i) Recursion for rM+1(i). Assuming that we have already
computed rM (i) via the inner product in (9), we can obtain
rM+1(i) by substituting (18) into (16) to get

rM+1(i) = rM (i) +
α∗

M (i)αh
M (i−1)

ξf

M
(i−1)

(ii) Recursion for γh
M+1(i). Denote γ−h

M+1(i)
∆
=

[
γh

M+1(i)
]−1
.

Then, replacing M by M + 1 into the time update of (7), and
substituting the resulting recursion into (17), we obtain

γ−h
M+1(i) = γ−h

M+1(i − 1) − γM+1(i − 1)|rM+1(i − 1)|2

(25)

The initial condition of this variable (which can be set at the

transition time δ + 1) is obtained from its definition in (17),
which gives γ−h

M+1(δ + 1) = 1 − γM+1(δ) + (µ − 1)−1.

(iii) Recursion for αh
M (i). Consider the time update of the

forward optimal weight vector wf
M,i−1, i.e.,

wf
M,i = wf

M,i−1 + kM,ifM (i)

Multiplying this relation from the left by hM,δ and substituting

the result into (21) yields

αh
M (i) = αh

M (i − 1) − rM (i)fM (i) , αh
M (δ) = fM (δ)

C. Correction for γM+1(i)

Finally, note that at time i = δ + 1 it holds that

γ̆M+1(δ + 1) = γ−1
M+1(δ) − 1 + 1/µ .

It is part of the initialization of all variables described so far,

and accomodates the transition in structure (to now scaled

rows) inherent to this quantity.

Now, a correction recursion for γM+1(i), for i ≥ δ +2, can
be obtained from Eq. (13), by multiplying it from the left by

hM+1,i. This gives

γ̆−1
M+1(i) = γ−1

M+1(i − 1) − γh
M+1(i − 1)|rM+1(i − 1)|2

Also, combining the above relation with (25) we obtain the

following alternative recursion for γ̆−1
M+1(i):

γ̆−1
M+1(i) =

γ−h
M+1(i)

γ−h
M+1(i − 1)γM+1(i − 1)
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IV. INITIAL CONDITIONS

It has been shown in [5] that in order for the fast transversal

filter (FTF) recursions to hold in the case of a general structure

for Rv , one must select certain initial quantities {p, q, ε, η}
such that the following condition is satisfied (see [5]):[

Rv p
p∗ ε

]
=

[
η q∗

q Rv

]
, for some p, q. (26)

Hence, in the case of a Toeplitz covariance matrix Rv , whose

first row is defined by
[

c0 c1 · · · cM−1

]
, we obtain

η = ε = c0, and

p =
[

0 cM−2 · · · c1 c0

]T

q =
[

c∗1 c∗2 · · · c∗M−1 0
]T

The role of the quantities above is to define the initial

conditions {ζf
M (−2), ζb

M (−1), wf
M,−2, w

b
M,−1} as explained

in [5]. This completes the fast recursions for computing the

feedforward filter coefficients, which are listed in Table 14.

V. COMPUTATIONAL COMPLEXITY

We see that compared to a fast algorithm that propagates

the Kalman vector in N +M −1 iterations, the new algorithm
requires three additional O(M) recursions. These recursions
are given by Eqs. (8), (9) and (24), so that the complexity per

iteration amounts to O(8M) multiplies plus 13 scalar recur-
sions, resulting in O(8(N +M−1)M +13N) multiplications.
The complexity of computing the feedback filter depends

on the method chosen for fast convolution of the matrix H̄
with the optimal computed feedforward filter topt. Thus for
an FFT-based filtering, the complexity is the one of obtaining

the FFT of two vectors of K elements each [where K is the
smallest power-of-two integer larger than or equal to (L+M)],
the inverse FFT of another K size vector, and K complex

multiplies. Thus the overall complexity for the FBF amounts

to 2L + 6L log2(2L).

VI. CONCLUSION

We have proposed a fast procedure for computing con-

strained energy MMSE-DFE coefficients, in which case no

efficient algorithm was available. In contrast to a recently pro-

posed method for fast DFE computation in the unconstrained

formulation, the new algorithm requires three additional vector

recursions for propagating the Kalman vector (here obtained

in N +M −1 iterations, due to the general weighting matrix),
considering the more general case of colored noise. The

recursions of this paper can also be generalized to the MIMO

case, similarly to the unconstrained extension reported in [4].

In a forthcoming work, we shall consider efficient recursions

applied to the magnitude constrained DFE formulation of [2].

4Note that here the forgetting factor corresponding to a certain RLS problem
is always equal to one. However, our fast recursions deal with the problem
of processing a finite set of data samples. In other words, for our purpose,
the algorithm must stop when i = N . In this case there is no need of
much concern with error propagation effects, considering that the accumulated
errors during such finite interval can be accounted for by proper increase of
wordlength, or perhaps another mechanism to enforce stability.

Initialization
ζf

M
(−2) = ζb

M (−1) = c0

wf
−2 = R−1

v q

wb
M,−1 = R−1

v p
kM,−1 = 0
γM (0) = 1

For i = 0 to δ + 1, run the usual fast Kalman recursions;

When i = δ + 1, set:

tM,δ = γM(δ)kM,δ

αh
M (δ) = fM (δ)

γ−1
M (δ + 1) := γ−1

M (δ + 1) − 1 + 1/µ

γ−h
M+1(δ + 1) = 1 − γM+1(δ) + (µ − 1)−1

For i ≥ δ + 2:

αM (i − 1) = h(i) − hM,i−1wf
M,i−2

fM (i − 1) = γM (i − 1)αM (i − 1)
rM (i − 1) = hM,δkM,i−1

rM+1(i − 1) = rM (i − 1) +
α∗

M
(i−1)αh

M
(i−2)

ξ
f
M

(i−2)

sM+1(i − 1) = rM+1(i − 1)γh
M+1(i − 1)

k′

M,i−1 = kM,i−1 − sM+1(i − 1)tM,i−2

τM (i − 1) = α∗

M (i − 1) − sM+1(i − 1)αh∗(i − 2)

k̆M+1,i =

»
0

k′

M,i−1

–
+

τM (i−1)

ζ
f
M

(i−2)

»
1

−wf

M,i−2

–

ζf

M
(i − 1) = ζf

M
(i − 2) + α∗

M (i − 1)fM (i − 1)

wf

M,i−1 = wf

M,i−2 + kM,i−1fM (i − 1)

γM+1(i − 1) = γM (i − 1)
ζ

f
M

(i−2)

ζ
f
M

(i−1)

γ−h
M+1(i) = γ−h

M+1(i − 1) − γM+1(i − 1)|rM+1(i − 1)|2

γ̆−1
M+1(i) = γ−1

M+1(i − 1) − sM+1(i − 1)r∗

M+1(i − 1)

αh
M (i − 1) = αh

M (i − 2) − rM (i − 1)fM (i − 1)
tM,i−1 = tM,i−2 − r∗

M (i − 1)γM (i − 1)kM,i−1

νM (i) = (last entry of k̆M+1,i)
kM,i = k̆1:M,i + νM (i)wb

M,i−1

βM (i) = ζb
M (i − 1)ν∗

M (i)
γM (i) = [γ̆−1

M+1(i) − βM (i)νM (i)]−1

bM (i) = γM (i)βM (i)
ζb

M (i) = ζb
M (i − 1) + β∗

M (i)bM (i)
wb

M,i = wb
M,i−1 + kM,ibM (i)

Table 1: Fast Computation of the feedfoward filter.
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