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ABSTRACT

A general Variational Bayesian framework for iterative data
and parameter estimation for coherent detection is introduced
as a generalization of the EM-algorithm. Explicit solutions
are given for MIMO channel estimation with Gaussian prior
and noise covariance estimation with inverse-Wishart prior.
Simulation of a GSM-like system provides empirical proof
that the VBEM-algorithm is able to provide better perfor-
mance than the EM-algorithm. However, if the posterior dis-
tribution is highly peaked, the VBEM-algorithm approaches
the EM-algorithm and the gain disappears. The potential gain
is therefore greatest in systems with a small amount of ob-
servations compared to the number of parameters to be esti-
mated.

1. INTRODUCTION

The focus of this paper is on improved iterative data and para-
meter estimation for coherent detection in block-fading freq-
uency-selective MIMO channels. Much work has been done
within this field and many variants of the EM-algorithm have
been applied to communication systems, see for example [1,
2, 3]. However, previous estimators have all provided point-
estimates of the parameters, not distributions as offered by the
full Bayesian approach. On the other hand, Bayesian estima-
tors average over the distribution of the unknown variables
or parameters to provide improved inference about the sys-
tem. Previously, a so-called Bayesian EM (BEM)-algorithm
was introduced for communication systems [2, 3]. However,
the BEM-algorithm provides a Maximum A Posteriori (MAP)
point-estimate and is therefore not a true Bayesian estimator.

The contribution of this paper is to introduce the Varia-
tional Bayesian EM (VBEM)-algorithm, already used exten-
sively in the machine-learning community, to the communi-
cations society. Explicitly, the contribution is to formulate an
iterative data, channel and noise covariance estimator based
on the VBEM-algorithm. By simulations it is shown, that
the performance of a communication system can be improved
over that based on the EM-algorithm when there is significant
uncertainty in the parameter estimates.
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2. SYSTEM MODEL

We will consider the uncoded linear M × N MIMO system

yi = Hxi + ni (1)

where H ∈ CM×N is the channel matrix and xi ∈ ΩN×1

is the vector of transmitted symbols at time index i, each
belonging to the complex-valued alphabet Ω. The received
signal vector yi ∈ CM×1 holds the observations at time i
and the additive noise ni ∈ CM×1 is assumed to be circu-
lar zero-mean Gaussian with covariance Σ � E

[
nin

H
i

]
and

E
[
nin

T
i

]
= 0. The generalization of the estimation frame-

work to Gauss-Markov noise is straightforward [4].
The frequency-selective channel is assumed to have a tem-

poral length of L symbols. Let Nt and Nr denote the num-
ber of transmitters and receivers respectively leading to N =
LNt and M = Nr. For channel estimation, it is desirable to
rewrite the channel matrix into a vector notation as

yi = Xih + ni (2)

with h � vec (H) where vec (·) is the column stacking oper-
ator. The k’th row of the symbol matrix Xi ∈ CNr×LNtNr is
found by upsampling xT

i by Nr and shifting it right by k − 1
positions producing a Toeplitz structure. The two representa-
tions are equivalent and we can use the best suited depending
on conditions.

Assuming data is sent in frames of Nf symbols per trans-
mitter, the collection of all transmitted symbols and observa-
tions is given by

x = {x1,x2, ...,xNf
}, y = {y1,y2, ...,yNe

} (3)

where Ne = Nf + L − 1 due to the convolutive multipath
channel.

3. MAXIMUM LIKELIHOOD ESTIMATION

In this section, a quick outline of Maximum Likelihood (ML)
estimation using the EM-algorithm is presented as the VBEM-
algorithm is a generalization of the EM-algorithm. The frame-
work is in a general form and is carried over to the formulation
of the VBEM-algorithm. For further details, see [5, 6].
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The idea behind the EM-algorithm is to consider the ob-
servations y being incomplete data as the underlying hidden
variables x are unknown. This problem is overcome by con-
sidering the hidden variables as being random variables and
averaging over their distribution. By this philosophy we can
write the complete-data log-likelihood of the parameter set θ

E : Q
(
θ, θ(j−1)

)
� 〈ln [p (y,x | θ)]〉

p(x|y,θ(j−1)) (4)

where θ
(j−1) is the parameter set from the previous iteration

and 〈·〉p(·) indicates averaging w.r.t. the distribution in the
subscript. Carrying out the above averaging is often termed
the E-step. Next, in the so-called M-step we maximize w.r.t.
θ, i.e.

M : θ
(j)

� argmax
θ

Q
(
θ, θ(j−1)

)
(5)

We now have an iterative algorithm, which can be shown
to converge to a local maximum in p (y, θ). However, the
fact that the algorithm ”only” converges to a local maximum
makes initialization of the algorithm crucial, as it may other-
wise converge to an incorrect maximum.

In terms of the system model from Section 2, the obser-
vations are the received samples y, the hidden variables cor-
respond to the transmitted symbols x and the parameter set
is θ = {h,Σ}. In the E-step, the posterior distribution of

the transmitted symbols p
(
x | y,h(j),Σ(j)

)
is found by the

well-known BCJR algorithm using forward-backward recur-
sions, see e.g. [4]. The M-step finds the joint ML channel
and covariance estimate, but this produces non-linear sys-
tems of equations that in the general case appear to have no
closed-form solution. A solution is to find the individual ML
estimates and possibly iterate between them in the M-step.
The individual solutions are easily found to be the Weighted
Least-Squares estimator and the sample covariance for the
channel and covariance estimate respectively, both averaged
over the posterior of the symbols. This common result is
not reproduced here, but is given by h

(j)
MAP in (13) and S(j)

in (14) by replacing the parameter distribution with a delta-
function in the ML point estimate, i.e. qθ (θ) = δ (θ − θML)
and Σ−1

1 = 0.

4. BAYESIAN ESTIMATION

In a truly Bayesian framework, all unknown variables and pa-
rameters are treated as random variables with some distribu-
tion that can be integrated out. The marginal likelihood of the
model is therefore found by integrating out the uncertainty as

p (y) =

∫
p (y,x, θ) dxdθ (6)

However, for interesting models the integration is likely to
be intractable as it involves multi-dimensional integrals over

complicated expressions. Instead, we lower-bound the mar-
ginal log-likelihood by Jensen’s inequality as

ln [p (y)] = ln

[∫
q (x, θ)

p (y,x, θ)

q (x, θ)
dxdθ

]

≥

∫
q (x, θ) ln

[
p (y,x, θ)

q (x, θ)

]
dxdθ

(7)

where q (x, θ) is a free distribution used to approximate the
posterior p (y,x, θ). Maximizing the lower-bound w.r.t. the
free distribution q (x, θ) yields the exact posterior, which was
what we started out with, and is therefore of no interest. Con-
straining the free distribution to factorize between the hidden
variables and the parameters by requiring

q (x, θ) = qx (x) qθ (θ) (8)

provides the intriguing solution that we can optimize the free
distributions individually and iterate between them to max-
imize the lower-bound. This is done by the alternating be-
tween the VBE-step and the VBM-step given by

V BE : q(j)
x (x) ∝ e

〈ln[p(y,x|θ)]〉
q
(j−1)
θ

(θ)

V BM : q
(j)
θ

(θ) ∝ p (θ) e
〈ln[p(y,x|θ)]〉

q
(j)
x (x)

(9)

where p (θ) is a parameter prior. Due to the factorization,
global convergence can not be guaranteed, but it can be shown
to converge to a local maximum in p (y). From (9) we see
that the VBEM-algorithm is similar to the EM-algorithm, but
the distinction between hidden variables and unknown para-
meters has vanished as the VBE- and VBM-steps are both
averaging over posterior distributions. For more details on
Bayesian estimation and the VBEM-algorithm, see [6, 7].

Returning to the system model of Section 2 we now have

q (x,h,Σ) = qx (x) qh (h) qΣ (Σ) (10)

where the free distribution is further assumed to factorize be-
tween the channel and noise covariance posterior. This ap-
proach is equivalent to the individual maximization described
in Section 3 for the M-step. The above facorization can be
seen to yield the updates

q(j)
x (x) ∝ e

〈ln[p(y,x|h,Σ)]〉
q
(j−1)
h

(h)q
(j−1)
Σ

(Σ)

q
(j)
h (h) ∝ p (h) e

〈ln[p(y,x|h,Σ)]〉
q
(j)
x (x)q

(j−1)
Σ

(Σ)

q
(j)
Σ (Σ) ∝ p (Σ) e

〈ln[p(y,x|h,Σ)]〉
q
(j)
x (x)q

(j)
h

(h)

(11)

To simplify the updates, the parameter priors should be con-
jugate meaning that the posterior is of the same type as the
prior. For the channel estimate, the conjugate prior is h ∼
CN (h1,Σ1) and for the covariance, it is the inverse-Wishart
distribution [8].
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For the channel estimate, using (2)-(3) and the fact that
the noise and prior is Gaussian, we get

− ln
[
q
(j)
h (h)

]
+ Z1 = (h − h1)

H
Σ−1

1 (h − h1)

+

Ne∑
i=1

〈
(yi − Xih)

H 〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
(yi − Xih)

〉
q
(j)
x (x)

(12)

with Z indicating a normalization constant. Due to the choice
of a conjugate prior, the posterior is Gaussian and given by

q
(j)
h (h) ∼ CN

(
h

(j)
MAP ,Σ

(j)
h

)
with covariance and mean

Σ
(j)
h

=

(
Ne∑
i=1

〈
XH

i

〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
Xi

〉
q
(j)
x (x)

+ Σ−1
1

)−1

h
(j)
MAP =

Σ
(j)
h

(
Ne∑
i=1

〈
XH

i

〉
q
(j)
x (x)

〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
yi + Σ−1

1 h1

)

(13)

The distribution of the noise covariance is

− ln
[
q
(j)
Σ (Σ)

]
+ ln [p (Σ)] − Neln |Σ| + Z2

=

Ne∑
i=1

〈
(yi − Xih)

H
Σ−1 (yi − Xih)

〉
q
(j)
x (x)q

(j)
h

(h)

= tr

{
Σ−1

Ne∑
i=1

〈
(yi − Xih) (yi − Xih)

H
〉

q
(j)
x (x)q

(j)
h

(h)

}

= tr
{
Σ−1S(j)

}
(14)

where S(j) is the sample covariance averaged over the poste-
riors. It can be shown [8], that for the inverse-Wishart prior
Σ ∼ CW−1 (ν,Σ2), we get

〈
Σ−1

〉
q
(j)
Σ

(Σ)
= (Ne + ν)

(
S(j) + Σ2

)−1

(15)

which for the noninformativeprior Σ ∼ CW−1 (0,0) is equiv-
alent to the ML covariance estimate. The conjugate priors can
therefore be interpreted as inserting virtual observations into
the estimation.

The VBE-step is similar to the traditional BCJR algo-
rithm, only now we average over the posterior distribution
of the parameters. The required state transition probabilities

γ (yi | Xi, θ) are therefore of the form

− ln [γ (yi | Xi, θ)] + Z3

=
〈
(yi − Xih)

H 〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
(yi − Xih)

〉
q
(j−1)
h

(h)

= Z4 − 2Re
{
yH

i

〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
Xi 〈h〉q(j−1)

h
(h)

}
+ tr

{〈
hhH

〉
q
(j−1)
h

(h)
XH

i

〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
Xi

}
(16)

As the posterior distribution of the channel estimate is Gaussian,
we have

〈h〉
q
(j)
h

(h)
= h

(j)
MAP

Σ(j)
m �

〈
hhH

〉
q
(j)
h

(h)
= h

(j)
MAP

(
h

(j)
MAP

)H

+ Σ
(j)
h

(17)

Inserting this into (16), we get

− ln [γ (yi | Xi, θ)] + Z3 − Z4

= −2Re
{
yH

i

〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
Xih

(j−1)
MAP

}
+ tr

{
Σ(j−1)

m XH
i

〈
Σ−1

〉
q
(j−1)
Σ

(Σ)
Xi

} (18)

The exchange of soft-information between the data and para-
meter estimators is now complete with the complexity being
similar to that of the equivalent EM-algorithm per iteration.

5. NUMERICAL EXAMPLE AND DISCUSSION

In order to indicate the advantage of the VBEM-algorithm
and keep things as simple as possible, a single-antenna noise-
limited GSM-like system is considered. The GSM system
has a burst structure with Nf = 142 + 6 transmitted sym-
bols, including the 6 so-called tailbits, and has Ntr = 26
known training symbols placed in the middle. The noise is as-
sumed to be Additive White Gaussian Noise (AWGN) and the
noise covariance estimation therefore reduces to a scalar vari-
ance estimation. The used channel model is the GSM Typical
Urban (TU) multipath channel profile [9] with a speed of 0
km/h and using ideal frequency hopping. This ensures that
the channel stays constant over a burst and that a new channel
is drawn from the distribution for every burst, i.e. making it
block-fading. The overall length of the transmission pulse-
shaping and channel model is L = 7. To make a fair compar-
ison with the EM-algorithm and not go into a discussion on
the correctness of various choices of priors, only noninforma-
tive priors are used for the VBEM-algorithm, i.e. Σ−1

1 = 0

and Σ ∼ CW−1 (0,0).
A difference between the considered system and a GSM

system is, that the considered modulation is linearized in or-
der to eliminate the non-linearities introduced by the GMSK
modulation used in GSM. The resulting linear modulation is
simply a BPSK modulation with a rotation of π/2 per symbol.
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Fig. 1. Simulation of a GSM-like system using a TU0iFH channel profile, Nt = Nr = 1, L = 7.

On the left of Fig. 1, the Bit Error Rate (BER) of the above
mentioned system is plotted. The results termed ”Known”
and ”Training” are respectively the BER using the correct pa-
rameters and using only the training symbols for estimation.
It can be seen that the BER of the EM and VBEM estimators
are pretty much the same, although the VBEM estimator is
actually better. The reason for this result is, that the number
of observations is large compared to the number of parame-
ters to be estimated. This makes the posterior distribution
highly peaked around the ML solution effectively making the
VBEM-algorithm fall back to the EM-algorithm.

However, changing the ratio between the number of esti-
mated parameters and the number of observations affects the
posterior distribution. On the right of Fig. 1, the length of the
GSM burst has been reduced to half its original size leading
to a less peaked posterior. The result is that the EM-algorithm
now performs worse than the VBEM-algorithm, as the lat-
ter incorporates knowledge about the uncertainty in the pa-
rameters. The VBEM-algorithm is therefore beneficial when
”few” observations are present or when ”a lot” of parameters
have to be estimated. This little example illustrates the ad-
vantage of the VBEM-algorithm for systems employing short
packet structures and/or MIMO systems with many parame-
ters to be estimated from a limited number of observations.
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