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Abstract— In this paper, we consider the problem of blind multiple-
input multiple-output (MIMO) finite impulse response (FIR) channel
identification driven by spatially uncorrelated and temporally white input
signals. A method that can entirely identify the MIMO channel based
only on the second-order statistics (SOS) of the observed data is proposed.
The complete identification of the convolutive mixture is accomplished
by exploiting the diversity of the channel orders. The uniqueness of the
proposed solution is proved. Numerical simulation results are presented
to illustrate the performance of the proposed algorithm.

I. INTRODUCTION

Blind identification of MIMO FIR channel arises in a wide
variety of communication and signal processing applications, which
include speech enhancement, wireless mobile communications and
brain signal analysis. Thus far, there have been a lot of research
works [1]–[4] on blind channel identification driven by spatially
uncorrelated and temporally white input signals. In this case, most
existing SOS-based methods can only identify the channel up to
an unknown unitary matrix. To further resolve this instantaneous
mixture, additional information such as higher order statistics (HOS)
or signal constellation features needs to be exploited. Naturally, the
following question arises: is it possible for us to completely identify
the MIMO channel based solely on the second-order statistics of
the observed data without utilizing the additional information of the
transmitted signals? The answer is positive and it seems that the
first solution to this problem was proposed in [5]. In [5], it was
shown that the entire identification of the convolutive mixture can
be achieved via the second-order statistics of the observed data by
exploiting the channel order disparities, i.e. the channel orders of
each pair of users are different from each other. Later in the work [6],
the authors proposed a modified matrix outer-product decomposition
method which can identify and equalize the user channel that has the
longest channel order using the second-order statistics of the channel
output. It is also noticed that some results in [7] can be reformulated
into the linear MIMO setting and the reformulated results also show
that the diversity of the channel orders suffices for complete channel
identifiability via second-order statistics.

In this paper, we propose a SOS-based method that exploits the
diversity of the channel orders for complete channel identification.
This work is a further result of our previous work [8] that considers
the colored source signals with a priori known statistics. In fact, in
some sense, white signals can be deemed as a special form of the
colored signals with its power spectrum being flat and its statistics
known a priori. Thus the proposed method in [8] can be directly
extended to our case and we will show that, given that the channel
orders of each pair of users are different, the MIMO channel can
be completely identified. By exploiting the derived property of the
one-lag down and up shift square matrices, we provide a proof for

the uniqueness of the system solution, which serves as a theoretical
basis for our method.

We adopt the following notations throughout this paper. The
notations [·]T , [·]∗, [·]H and [·]† stand for transpose, complex con-
jugate, Hermitian transpose and the Moore-Penrose pseudo-inverse,
respectively. E[·] represents the mathematical expectation. ‖A‖ (‖a‖)
denotes the Frobenius norm (vector 2-norm) of matrix A (vector a).
The symbol Jn stands for the n×n one-lag down shift square matrix
whose first sub-diagonal entries below the main diagonal are unity,
whereas all remaining entries are zero; In denotes the n×n identity
matrix. Let A[r1 : r2, c1 : c2] denote the sub-matrix of A from rth

1

row to rth
2 row and from cth

1 column to cth
2 column. C

n×m and C
n

denote the set of n×m matrices and the set of n-dimensional column
vectors with complex entries, respectively.

II. SYSTEM MODEL AND BASIC ASSUMPTIONS

Consider a noisy linear MIMO channel with p inputs, si(n), i ∈
{1, 2, · · · , p}, and q outputs x(n)

�
= [x1(n) · · · xq(n)]

x(n) =

p∑
i=1

Li∑
l=0

hi(l)si(n − l) + w(n) (1)

where {hi(l)} denotes the multichannel filter corresponding to the ith

user, Li represents the channel order corresponding to the ith user.

By stacking the channel output vector x(n) and defining �x(n)
�
=

[xT (n) xT (n − 1) . . . xT (n − N)]T , �si(n)
�
= [si(n) si(n −

1) · · · si(n − N − Li)]
T and �w(n)

�
= [wT (n) wT (n −

1) . . . wT (n − N)]T , we can rewrite Eqn.(1) as

�x(n) =

p∑
i=1

Hi�si(n) + �w(n) = H�s(n) + �w(n) (2)

where Hi ∈ C
(N+1)q×di is a block Toeplitz matrix written as follows

with di
�
= N + Li + 1

Hi
�
=

⎡
⎢⎢⎢⎢⎣

hi(0) . . . hi(Li) 0 . . . 0

0 hi(0) . . . hi(Li)
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 hi(0) . . . hi(Li)

⎤
⎥⎥⎥⎥⎦

H �
=

[
H1 H2 · · · Hp

]

�s(n)
�
=

[
�sT

1 (n) �sT
2 (n) · · · �sT

p (n)
]T

Some basic assumptions are adopted as follows. A1) The number
of sources is known a priori, and there are more outputs than inputs,
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i.e. q > p. A2) Channel is irreducible and column-reduced. A3)
The channel order of each source is assumed to be known a priori.
A4) The sources are zero-mean spatially uncorrelated and temporally
white signals. A5) Additive noises are spatially uncorrelated and
temporally white noises, and they are statistically independent of
the sources. As a consequence of A2, the MIMO channel matrix
H is full column rank if the stack number N is chosen to satisfy
N + 1 ≥

∑p
i=1 Li [9]. In the sequel, we assume that H is full

column rank.

III. PROPOSED CHANNEL IDENTIFICATION METHOD

We begin by defining the source autocorrelation matrices as follows

Rsi [k]
�
= E[�si(n)�sH

i (n − k)] (3)

Rs[k]
�
= E[�s(n)�sH(n − k)] (4)

Also, in order to simplify the presentation of the proposed channel
identification method, we assume the noiseless case. Thus the auto-
correlation matrices of the received data �x(n) can be written as

Rx[k]
�
= E[�x(n)�xH(n − k)] = HRs[k]HH (5)

In the following, we will show that, given that the channel orders
of each pair of users are different from each other, the channel
convolution matrix H can be identified up to a block diagonal matrix

D �
= diag(λ1Id1 , · · · , λpIdp) instead of an unknown unitary matrix

by utilizing the estimated channel output autocorrelation matrices

Rx[k], k = {0,±1}, where di
�
= N + Li + 1. We commence by

introducing the following lemma.
Lemma 1: Given Rx[k] = HRs[k]HH , H is full column rank

and Rs[0] is invertible, then we have

Rx[k]R†
x[0] = HRs[k]R−1

s [0]H† (6)

Rx[k]R†
x[0]H = HRs[k]R−1

s [0] (7)
Proof: This lemma can be easily proved since we have R†

x[0] =
(HH)†R−1

s [0]H† which satisfies the four Moore-Penrose conditions
[10].

For convenience, let

Υ2k−1
�
= Rx[k]R†

x[0] Υ2k
�
= Rx[−k]R†

x[0]

Θ2k−1
�
= Rs[k]R−1

s [0] Θ2k
�
= Rs[−k]R−1

s [0]

We can therefore re-express Eqn.(7) (choose K ≥ k ≥ 1) as

Υk̄H = HΘk̄ ∀ k̄ ∈ {1, . . . , 2K} (8)

and further, for every k̄ ∈ {1, . . . , 2K}, we have the fol-

lowing by exploiting the block diagonal structure of Θk̄
�
=

diag(Θk̄,1, Θk̄,2, · · · , Θk̄,p) (Θk̄ is a block diagonal matrix because
the sources are uncorrelated with each other)

Υk̄Hi = HiΘk̄,i ∀ i ∈ {1, . . . , p} (9)

where Θk̄,i
�
= Rsi [k]R−1

si
[0], k = (k̄ + 1)/2 if k̄ is odd and k =

−k̄/2 if k̄ is even. For each i ∈ {1, . . . , p}, the above equation can
be used to identify the channel convolution matrix of user i, i.e. Hi,
since the knowledge of Θk̄,i is known a priori and the information of
Υk̄ can be obtained from the second-order statistics of the observed
data. By exploiting the block Toeplitz structure of Hi, we can rewrite
Eqn.(9) as

T1[Υk̄]hi = T2[Θk̄,i]hi (10)

where hi
�
=

[
hT

i (0) . . . hT
i (Li)

]T
, T1[·] and T2[·] respectively

represent a certain transformation on the bracketed matrix. Therefore
we may estimate hi by the following criterion

ĥi = arg min
‖hi‖=1

2K∑
k̄=1

∥∥[
T1[Υk̄] − T2[Θk̄,i]

]
hi

∥∥2
(11)

The above optimization has a closed-form solution which can be
obtained as the right singular vector associated with the smallest
singular value. However, this criterion fails to provide the true channel
estimation if the solution to Eqn.(10) is not unique, i.e. there exist
other non-zero vectors, gi, that are linearly independent of hi and
also satisfy T1[Υk̄]gi = T2[Θk̄,i]gi for any k̄ ∈ {1, . . . , 2K}.
Hence we are faced with the following problem, that is, under what
conditions the solution of Eqn.(10) will be unique. This problem is
studied in the following and we will show that, under the condition
that the channel order of user i is different from the channel orders
of other users, the uniqueness of the solution to Eqn.(10) can be
established by utilizing only Rx[0] and Rx[±1], i.e. the uniqueness
of the solution can be guaranteed by choosing k̄ = 1, 2 in Eqn.(10).
Under the assumption A4 that the sources are spatially uncorrelated
and temporally white, we have

Θ1 = Rsi [1]R−1
si

[0] = diag
(
Jd1 ,Jd2 , · · · ,Jdp

)
(12)

and

Θ2 = Rsi [−1]R−1
si

[0] = diag
(
JT

d1 ,JT
d2 , · · · ,JT

dp

)
(13)

In order to prove the uniqueness of the solution to Eqn.(10), we,
firstly, introduce the following lemma that exploits the properties of
the one-lag down and up shift square matrices.

Lemma 2: Given that Y ∈ C
m×n satisfies the following two

equations

(a) JmY = YJn (b) JT
mY = YJT

n (14)

then we have

• If m = n, then Y = λI, where λ could be any complex scalar
including zero.

• If m �= n, then Y = 0.
Proof: See Appendix A.

We now prove the uniqueness of the system solution to Eqn.(10)
by utilizing the above lemma. We, firstly, prove that the solution to
Eqn.(9) is unique (up to a scalar factor). The problem is formulated
as the following theorem.

Theorem 1: Given that (note that the following two equations are
directly from Eqn.(6))

(a) Υ1 = HΘ1H† (b) Υ2 = HΘ2H† (15)

If H is full column rank and the channel order of user i is different
from those of other users, i.e. Li �= Lj for j ∈ {1, . . . , i − 1, i +
1, . . . , p}, then any non-zero matrix Gi, that has the same block
Toeplitz structure as Hi and also satisfies Eqn.(9) for k̄ = 1, 2, i.e.
Υ1Gi = GiΘ1,i and Υ2Gi = GiΘ2,i, can be written as Gi = λiHi,
where λi is a non-zero complex scalar.

Proof: Suppose a non-zero matrix Gi ∈ C
(N+1)q×di with the

same block Toeplitz structure as Hi also satisfies Eqn.(9) for k̄ =
1, 2, then we have

Υ1Gi = GiΘ1,i ⇒ HΘ1H†Gi = GiΘ1,i ⇒ Θ1H†Gi = H†GiΘ1,i (16)

Υ2Gi = GiΘ2,i ⇒ HΘ2H†Gi = GiΘ2,i ⇒ Θ2H†Gi = H†GiΘ2,i (17)
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Let X
�
= H†Gi

�
=

[
XT

1 · · · XT
p

]T
, where Xj ∈ C

dj×di , then
we have

Θ1,jXj = XjΘ1,i ∀ j ∈ {1, . . . , p} (18)

Θ2,jXj = XjΘ2,i ∀ j ∈ {1, . . . , p} (19)

Since Θ1,i = Jdi , Θ2,i = JT
di

and di �= dj for j ∈ {1, . . . , i −
1, i + 1, . . . , p} (note that Li �= Lj is equivalent to di �= dj since
di = N + Li + 1), by utilizing Lemma 2, we have Xj = 0 for any
j �= i and Xj = λiIdi for j = i, i.e.

H†Gi =
[

0 · · · λiIdi · · · 0
]T �

= λiEi (20)

Therefore we only need to prove that the solution of Gi that satisfies
Eqn.(20) is unique and Gi = λiHi. Notice that Gi has the same block

Toeplitz structure as Hi. If we write H† �
= [V0 · · · VN ], we can

transform H†Gi = λiEi as

V

⎡
⎢⎣

gi(0)
...

gi(Li)

⎤
⎥⎦ = vec(λiEi) (21)

where gi(0), · · · ,gi(Li) are the corresponding column vectors used
to construct the block Toeplize matrix Gi in the way as we define
Hi using hi(0), · · · ,hi(Li), V ∈ C

di(d1+···+dp)×(Li+1)q is a block
Toeplitz matrix written as

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V0 0 · · · 0
... V0

. . .
...

VN

. . .
. . . 0

0 VN

. . . V0

...
. . .

. . .
...

0 · · · 0 VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Obviously, from Eqn.(21) we know that Gi can be uniquely deter-
mined if V has full column rank. Recalling Theorem 1 in [11], V has
full column rank if the following condition holds, i.e. there exists a
nonzero z0 (including ∞) such that the polynomial matrix V(z0) has

full column rank, where V(z)
�
= V0+V1z

−1+ · · ·+VNz−N . This
mild condition can be satisfied with probability one since generally,
when L ≥ 1, the entries of matrix H† can be considered as randomly
generated. Note that the polynomial matrix V(z) is of dimension
(d1+· · ·+dp)×q and we can guarantee this matrix to be a tall matrix
be choosing a proper N . Thus we can conclude that the solution of Gi

is unique and Gi = λiHi. Note that λi can not be zero here because
Gi would be zero under the condition λi = 0, which contradicts our
previously made assumption Gi �= 0. The proof is completed here.

Since Eqn.(9) and Eqn.(10) can be derived from each other, it
implies that the solution to Eqn.(10) is unique up to a scaling constant
of the “true” channel hi. Therefore hi can be estimated by the
criterion in Eqn.(11) with K = 1, i.e.

ĥi = arg min
‖hi‖=1

∥∥∥∥
[

T1[Υ1] − T2[Jdi ]
T1[Υ2] − T2[J

T
di

]

]
hi

∥∥∥∥
2

(22)

As mentioned before, the above optimization has a closed-form
solution which can be obtained as the right singular vector associated
with the smallest singular value. Also, as we can see, the channel of
the desired user i, Hi, can be estimated up to a nonzero complex
scalar from the second-order statistics of the received data if the

channel order of user i is different from those of other users. Clearly,
given that the channel orders of each pair of users are different, then
the channel convolution matrix H can be identified up to a block
diagonal matrix D = diag(λ1Id1 , · · · , λpIdp), where λi for each
i ∈ {1, . . . , p} is an unknown nonzero complex scalar.

In the following, we would like to discuss the case where the
identifiability condition imposed on the channel orders is not satisfied
in Theorem 1, that is, the channel order of the desired user i is the
same as those of some other users. For simplicity, we only assume
that the channel order of the desired user i is the same as that of
another user l, i.e. Li = Ll and Li �= Lj for j ∈ {1, . . . , p}, j �= i, l.
In this case, by following the similar steps as that in proof of Theorem
1, we can conclude that Gi = λiHi + λlHl, where λi and λl can
be any complex scalar including zero but λi and λl can not be zero
at the same time. Obviously, Hi, Hl and the linear combinations of
Hi and Hl can all satisfy Eqn.(9). Hence the solution to Eqn.(10) is
not unique because hi, hl and their linear combinations λihi +λlhl

all satisfy Eqn.(10). Consequently, the criterion of Eqn.(11) admits
two independent solutions, say, gi and gl, which are all expressed
by the linear combinations of hi and hl, that is, gi = a11hi +a12hl

and gl = a21hi + a22hl. As we can see, in this case, the unknown
instantaneous mixture ambiguity arises again.

IV. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
performance of our proposed algorithm. We compare our method
to the subspace (SS) method developed in [5]. In our simulations,
the additive noise w(n) is taken as spatial-temporal white complex
Gaussian noise with zero mean and variance σ2

w. The signal-to-noise
ratio (SNR) is defined as

SNR = 10 · log
E[‖H�s(n)‖2]

E[‖�w(n)‖2]

We consider p = 2 sources arriving at q = 3 sensors via a
multipath channel. The source signals are independent and identically
distributed (i.i.d.) information sequences drawn from a 4-QPSK
constellation S = {1,−1, i,−i}. The channel is randomly generated
as

{h1(l)} =

⎡
⎣ 0.2885 0.4926 0.2480 0

0.1714 −0.2387 0.1945 0
0.0455 −0.0463 −0.0256 0

⎤
⎦

{h2(l)} =

⎡
⎣ 0.0572 0.2074 −0.0466 0.1085

0.2475 −0.1004 0.0213 −0.2331
0.0968 −0.2527 −0.3888 0.2701

⎤
⎦

It can be seen that the channel orders corresponding to these two users
are different and this suffices for the complete channel identification.
Once the channel has been estimated by our algorithm, we can
compute the zero-forcing equalizers and the minimum mean-squared
error (MMSE) equalizers respectively as

EZF = Ĥ†

EMMSE = EZF(I − σ2
wR̂−1

x [0])

where R̂x[0] is the undenoised estimated autocorrelation matrix. The
inherent phase ambiguity of equalizers per user is removed before we
perform the equalization. For the subspace method [5], the source
signals can be recovered directly by using a two-step estimation
procedure, without the need to identify the channel in advance. In
the simulations, we choose stack number N = 5. The channel order
of each user is assumed known a priori. Results are averaged over
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Fig. 1: SER versus SNR, Ts = 1000. Solid lines for user 1; dotted
lines for user 2.

500 Monte Carlo runs. Figure 1 shows the symbol error rates (SER)
as a function of SNR with Ts = 1000 data samples being used
for statistics estimation. The MMSE equalizer with delay 5 is used
for our proposed algorithm. We can see that our proposed method
presents a clear performance advantage over the subspace method.
The results also validate our previous claim that the channel can be
completely identified by exploiting the channel order disparity.

V. CONCLUSION

In this paper, we propose a SOS-based method that admits a closed-
form solution for blind identification of MIMO FIR channel driven
by white inputs. By exploiting the disparity of the users’ channel
orders, the proposed method identifies the channel of each user up to
a complex scalar instead of identifying the channel up to an unknown
nonsingular matrix. Simulation results show that the proposed method
compares favorably with the subspace method [5].

APPENDIX A
PROOF OF LEMMA 2

We present our proof in the following three steps.

Step 1: For notational convenience, let G1
�
= JmY = YJn, G2

�
=

JT
mY = YJT

n . Considering the relationship of G1, we have

G1[2 : m, n] =
[
y1,n y2,n · · · ym−1,n

]T

=
[
0 0 · · · 0

]T
(23)

G1[1, 1 : n − 1] =
[
0 0 · · · 0

]
=

[
y1,2 y1,3 · · · y1,n

]
(24)

Similarly, considering the relationship of G2, we have

G2[1 : m − 1, 1] =
[
y2,1 y3,1 · · · ym−1,1

]T

=
[
0 0 · · · 0

]T
(25)

G2[m, 2 : n] =
[
0 0 · · · 0

]
=

[
ym,1 ym,2 · · · ym,n−1

]
(26)

Therefore we can conclude that all entries located at the edges of the
matrix Y are zero except the entries y1,1 and ym,n.

Step 2: Now we consider the sub-matrix of G1 from second row
to mth row and from first column to (n − 1)th column, denoted by
G1[2 : m, 1 : n − 1]. This sub-matrix can be easily computed as if
we write Jm and Y as follows

Jm =

[
01×(m−1) 0

I(m−1)×(m−1) 0(m−1)×1

]

Y =

[
Y[1 : m − 1, 1 : n − 1] Y[1 : m − 1, n]

Y[m, 1 : n − 1] ym,n

]

Obviously from G1 = JmY we have

G1[2 : m, 1 : n − 1] = Y[1 : m − 1, 1 : n − 1] (27)

On the other hand, we can write Jn and Y as

Y =

[
y1,1 Y[1, 2 : n]

Y[2 : m, 1] Y[2 : m, 2 : n]

]

Jn =

[
01×(n−1) 0

I(n−1)×(n−1) 0(n−1)×1

]

Then from G1 = YJn we have

G1[2 : m, 1 : n − 1] = Y[2 : m, 2 : n] (28)

By combining Eqn.(27) and Eqn.(28), we can conclude that

yi,j = yi+1,j+1 (29)

for i ∈ {1, . . . , m − 1}, j ∈ {1, . . . , n − 1}, which shows that Y
has a Toeplitz form.

Step 3: If m = n, based on the above derived results, it is easy to
know that all entries on the main diagonal are equal, and all entries
off the main diagonal are zero. Therefore we conclude that Y = λI,
where λ could be any complex scalar including zero. If m �= n,
since Y has a Toeplitz form and all entries located at the edges of
the matrix Y are zero (note that y1,1 and ym,n can be easily proved to
be zero by utilizing the Toeplitz form when m �= n), hence Y = 0.
The proof is completed here.
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