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ABSTRACT

In this work, we propose new particle filter based blind equal-
ization algorithms for FIR channels subject to additive noise
of arbitrary distributions. These algorithms employ artificial
evolution methods to jointly generate samples from the miss-
ing data and from the unknown channel parameters, which are
assumed time-invariant. To achieve these results we introduce
a new importance function, which leads to greatly improved
performance compared to more obvious alternatives as veri-
fied via numerical simulations using Weibull envelope noise
processes, in which the performance of the trained MLSE
equalizer is approached to a narrow margin.

1. INTRODUCTION

Particle filters have extensively been applied to solving
blind equalization [1] and allied communications problems
[2]. Most of the literature on this subject, however, assumes
that the additive noise distribution is gaussian (or at most a
sum of gaussians) [3], both of whose observed signal likeli-
hood functions admit sufficient statistics, so that the unknown
channel parameters can be integrated out (Rao-Blackwellized)
thereby leading to improved performance. Though gaussian
noise models can be adjusted to reflect the impulsive nature of
disturbances observed in many realistic communications sys-
tems, this work examines new particle filtering algorithms to
directly solve the blind equalization problem of FIR channels
under non-gaussian distributed additive noise.

Despite the long time recognition of the potential of parti-
cle filters to solve non-gaussian estimation problems, their ap-
plication to blind equalization seems to be missing arguably
due to practical and theoretical reasons like (i) the noise found
in many practical communications systems may be well ap-
proximated by gaussian models and (ii) non-gaussian models
lead to estimation problems in which (static) parameters are
part of the state. As pointed out in [4], particle filters cannot
be shown to uniformly converge to the exact solution of this
class of estimation problems, and, in fact, have been observed
to diverge on some occasions.
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The algorithms developed in this work are based mainly
on artificial parameter evolution SIS methods [5, Ch. 10],
which possess smaller computational complexity (per parti-
cle) and superior performance, at least under the present mod-
els. To address the problem, we introduce a new importance
function that approximates the optimal one, and, via numeri-
cal simulations, quantify the performance of the resulting al-
gorithms under Weibull envelope noise, for differential QPSK
modulation.

The remainder of this article is organized as follows: in
Sec. 2, we introduce the adopted signal models and estimation
objectives. In Sec. 3 we give a brief overview of parameter
artificial evolution particle filtering methods applied to blind
equalization and, in Sec. 4, describe the proposed methods.
Finally Sec. 5 contains some simulation results, followed by
conclusions in Sec. 6.

2. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a communication system that differentially encodes
a sequence of equiprobable i.i.d QPSK symbols b0:k � {b0, ...
, bk}, resulting in the (also i.i.d. and equiprobable) sequence
x0:k, which is transmitted over a FIR additive noise frequency
selective channel with known order. The baud-rate received
signal sample yk at instant k is then assumed to obey the re-
lation

yk =

L−1∑
i=0

xk−ihk,i + vk = hH
k Xk + vk . (1)

where hk = [ hk,0 hk,1 ... hk,L−1 ]T , hk,j , 0 ≤ j < L
are the channel impulse response terms at instant k, Xk =
[ xk ... xk−L+1 ]T , L is the channel order, and vk is an i.i.d
noise process with known distribution g(·).

We further assume that the channel parameter vector is
time-invariant, statistically independent from the other vari-
ables, and that it has a Gaussian prior distribution. Our aim is
hence to approximate the posterior density p(bk|y0:k), where-
from MAP estimates of the transmitted bits can be obtained.

When the additive noise vk is Gaussian, particle filtering
methods can directly approximate the density p(b0:k|y0:k) [1],
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giving rise to the desired density via marginalization. How-
ever, if the usual Gaussian assumption is relaxed and the noise
distribution no longer admits sufficient statistics [6], Rao-
Blackwellized particle filters (i.e., algorithms which integrate
“nuisance” parameters) can no longer be developed. As a con-
sequence, one must resort to methods that estimate jointly pa-
rameters and state as described in Sec. 3.

3. PARTICLE FILTERS FOR JOINT PARAMETER
AND STATE ESTIMATION

In this section we provide a brief introduction to the use of
particle filters in estimation problems with unknown fixed pa-
rameters. Please refer to [5, Ch. 2] and [4] for further infor-
mation and discussion of open theoretical problems regarding
the convergence of these algorithms.

Suppose that one desires to sequentially approximate the
density p(X0:k, h0:k|y0:k) by means of a set of weighted sam-
ples (particles). Upon observing yk, one must come up with
samples of the variables Xk and hk such that the joint poste-
rior distribution of X0:k and h0:k is approximated. Accord-
ing to the classical Gordon method, this is achieved easily by
sampling from an arbitrary importance density π(h0:k, X0:k|
y0:k) defined as the product of its marginals, i.e.,

π(h0:k, X0:k|y0:k) = π(h0:k−1, X0:k−1|y0:k−1)
π(Xk, hk|h0:k−1, X0:k−1, y0:k),

and by attributing the weight

w
(i)
k = p(X

(i)
0:k, h

(i)
0:k|y0:k)/π(X

(i)
0:k, h

(i)
0:k|y0:k),

to each sample {h
(i)
k , X

(i)
k }. These weights can be sequen-

tially evaluated as

w
(i)
k ∝ w

(i)
k−1

p(X
(i)
k , h

(i)
k , yk|h

(i)
0:k−1, X

(i)
0:k−1, y0:k−1)

π(h
(i)
k , X

(i)
k |h

(i)
0:k−1, X

(i)
0:k−1, y0:k)

. (2)

Therefore, to approximate p(X0:k, h0:k|y0:k), one must (i)
evaluate and sample from the importance density and (ii) eval-
uate the weighting term on the numerator of the r.h.s of (2).

3.1. Artificial Evolution

To compute the numerator of (2), note that the prior indepen-
dence of the bits and of the channel parameters leads to

p(Xk, hk, yk|h0:k−1, X0:k−1, y0:k−1) =

p(yk|hk, Xk)p(Xk|X0:k−1)p(hk|h0:k−1) .
(3)

Under the assumption that the parameter vector is time-
invariant, one gets that p(hk|h0:k−1) = δ(hk − h0) (where δ
denotes the Dirac impulse function). This causes the weight
of any particle for which h

(i)
k �= h

(i)
0 to be zeroed, which pre-

vents the adaption of the parameters no matter the importance

function chosen. Artificial parameter evolution techniques [5,
Ch. 10] provide a way to circumvent this problem by regard-
ing the parameter vector is slowly time-varying. In general,
this is done via an AR(1) Gaussian model, such that

p(hk|h0:k−1) = N (hk|hk−1; Iρ2), (4)

with ρ2 � ‖h0‖
2.

3.2. Basic Blind Equalization Algorithm

For the signal model of Sec. 2, the remaining terms of (3) can
be easily determined. While the likelihood term is given by

p(yk|hk, Xk) = g(yk − hH
k Xk), (5)

one also obtains that

p(Xk|X0:k−1) = p(xk|xk−1)∏k
j=k−L+1

∏L+k−j−1
i=1 I {[Xj ]i = [Xj−1]i+1} ,

(6)

where I{·} denotes the event indicator and [A]i indicates the
i−th element of a vector. Notice that the term that multiplies
p(xk|xk−1) on the r.h.s. of (6) always equals 1 if the sequence
X0:k is consistent with its definition given in Sec. 2. There-
fore

p(Xk|X0:k−1) = p(xk) , (7)

as the coded symbols xk are assumed i.i.d..
Observe also that (6) implies that p(X0:k) = p(x0:k), and,

similarly, exploiting the fact that b0:k uniquely defines x0:k,
we obtain that p(X0:k, h0:k|y0:k) = p(b0:k, h0:k|y0:k). By
combining (4)-(7), one can evaluate (3) and, as a result, the
weight update function (2). Adopting the prior importance
function,

π(h
(i)
k , X

(i)
k |h

(i)
0:k−1, X

(i)
0:k−1, y0:k) = p(xk)N (hk|h

(i)
k−1; Iρ2) ,

(8)
further simplifies (2), allowing one to estimate b0:k accord-
ing to the algorithm of Table 1. Unfortunately, this algorithm
performs rather poorly (Sec. 5) regardless of the number of
particles P employed, a fact that must have discouraged fur-
ther research on this topic.

A few comments about the algorithm of Table 1: note
that (i) the computational complexity (per particle) of this
method is much smaller than that of Rao-Blackwellized [1]
algorithms, for which a Kalman filter step must be evaluated
for each particle at every iteration, and is dominated by the
complexity of the resampling step, (ii) its memory require-
ments are also very small, since one must only store the vari-
ables h

(i)
k and X

(i)
k , a total of 2LP numbers and finally (iii)

the phase ambiguity inherent to the blind equalization prob-
lem not only makes the use of a differential coding scheme
mandatory, but also prevents the direct estimation of the chan-
nel parameters, since the samples h

(i)
k are affected by random

phase rotations.
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(Initialization)

-Draw h
(i)
0 ∼ NC(h0|h̄0; Σ0).

-Draw X
(i)
0 ∼ p(X0).

•For k > 0
• For i = 0, ..., P − 1,

-Draw h
(i)
k ∼ N (hk|h

(i)
k−1; Iρ2).

-Draw X
(i)
k ∼ p(X

(i)
k |X

(i)
k−1).

-Obtain b
(i)
k by decoding x

(i)
0:k

-Calculate and normalize the weights

w
(i)
k ∝ g(yk − h

(i)H
k X

(i)
k ) .

• End
-Resample [5] the particle set with probabilities

given by the weights w
(i)
k .

-Estimate p(bk) as

p(bk = B|y0:k) ≈ 1
P

∑P−1
i=0 I{b

(i)
k = B} .

•End

Table 1. Basic Blind Equalization Algorithm (AE I)

3.3. Smoothing

A method described in [7] allows one to approximate the
smoothing density p(bk|y0:k+d), d > 0, by a trivial modifica-
tion of the algorithm of Table 1. Suppose that at instant k the
resampling step produces a set of indexes jk(i), 0 ≤ i < P .
Now, introducing the notation b

(i)
k,k � b

(i)
k and b

(i)
l,k+1 � b

jk(i)
l,k ,

l ≤ k, one can show that for d ≥ 0,

p(bk−d = B|y0:k) ≈
1

P

P−1∑
i=0

I{b
(i)
k−d,k = B} , (9)

i.e., smoothed estimates can be obtained by resampling b
(i)
k ,

0 ≤ i < P according to the weights calculated in successive
iterations. As verified in (Sec. 5), this leads to great perfor-
mance improvements at the cost of a small complexity and
memory increase.

4. IMPROVED EQUALIZATION ALGORITHM

The bad performance of the algorithm of Table 1 induced us
to look for alternative particle filtering structures to solve the
target estimation problem. As the optimal importance func-
tion cannot be evaluated for the adopted signal model, we pro-
pose an alternative heuristic function that mimics the optimal,
approximating the analytically unsolvable integral by a sum-
mation (Table 2).

The proposed importance function consists of two steps:
in the first, M samples of h

(i)
k are drawn from a reduced vari-

ance artificial prior, forming the set h
(i,r)
k . Then, the likeli-

hood of each of the possible pair {h(i,r)
k , X

(i)
k } is evaluated

and normalized, and a sample is drawn from the resulting dis-
crete joint density. The weights are then evaluated according
to (2).

(Initialization)

-Draw h
(i)
0 ∼ NC(h0|h̄0; Σ0).

-Draw X
(i)
0 ∼ p(X0).

•For k > 0
• For i = 0, ..., P − 1,
-For r = 0, ...,M − 1, draw

h
(i,r)
k ∼ NC(hk|h

(i)
k−1; I(ρ2/2)).

-Draw Xk and hk jointly from the discrete density
π(Xk, hk) ∝ g(yk − hH

k Xk)p(Xk|X
(i)
k−1)I{hk = h

(i,r)
k },

-Calculate and normalize the weights w
(i)
k ∝∑

r,s g(yk − h
(r)H
k X

(s)
k )p(X

(s)
k |X

(i)
k−1)N (h

(r)
k |h

(i)
k−1; I

ρ2

2 ) .

•End

-Obtain b
(i)
k by decoding x

(i)
0:k, i = 0, ..., P − 1.

-Resample the particle set with probabilities

given by the weights w
(i)
k .

-Estimate p(bk−L) as

p(bk−L = B) ≈ 1
P

∑P−1
i=0 I{b

(i)
k−d,k = B} .

•End

Table 2. Modified Algorithm (AE II)

5. SIMULATION RESULTS

To quantify the performance of the proposed blind equaliza-
tion methods, we carried out numerical simulations, evalu-
ating the mean BER (bit error rates) along 250 independent
realizations, each containing a block of 400 independently
transmitted QPSK symbols. BER evaluation was made af-
ter discarding the first 100 symbols to allow for algorithm
convergence. The proposed algorithms were initialized as de-
scribed in Tables 1 and 2, with h̄0 = 0 and Σ̄0 = I .

We chose a white Weibull envelope noise model (see the
Appendix), with parameter a = 1.1 (strongly non-gaussian),
and employed order L = 3 normalized complex random chan-
nels, drawn from the complex Gaussian prior N (h|0; I). To
establish a comparison basis, we also evaluated the perfor-
mance of the optimal MLSE equalizer (Viterbi) with exact
channel knowledge and using the Weibull envelope noise den-
sity to compute path metrics.

In all simulations, we adopted ρ2 = 0.05 and employed
the residual resampling algorithm [5, Ch. 1]. In Fig. 1 we
show the mean BER obtained by the algorithms with a smooth-
ing lag of d = 10. As one can readily verify, the algorithm of
Table 1 (AE I) performed very poorly (the same was verified
for d = 0, not shown in the graphic). While the algorithm of
Table 2 (AE II) also performed poorly for M = 1, its perfor-
mance was much improved for M = 5, approaching that of
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the trained MLSE equalizer by a margin of 2-3 dB. As one
might expect, increasing the number of particles lead to im-
proved results.
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Fig. 1. Performance of blind equalization algorithms
(smoothing lag d = 10) under Weibull envelope white noise
as a function of the signal-to-noise ratio (SNR) and of the
number of particles employed, compared to the performance
of the optimal MLSE detector (Viterbi).

6. CONCLUSIONS

In this work we proposed and evaluated the performance of
blind equalization algorithms for known-order FIR channels
subject to additive non-gaussian noise. We introduced a new
importance function that led to greatly improved performance
under the simulation scenarios considered, in which QPSK
differentially modulated symbols are transmitted under Wei-
bull envelope noise.

Due to computational restraints, we did not evaluate the
performance of the proposed methods in steady state. How-
ever, we did not notice convergence issues when the proposed
algorithms are run for up to 10.000 iterations.
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Appendix: Weibull envelope noise

Consider the complex random variable v = vR+jvI obtained
[8] from two independent zero-mean real Gaussian variables
x, y of variance σ2 via the transform

vR = x(x2 + y2)1/a−1/2

vI = y(x2 + y2)1/a−1/2

for a > 1. The joint probability function of (vR, vI) is given
by

p(vR, vI) =
a

4πσ2
(v2

R+v2
I )a/2−1 exp

(
−

1

2σ2
(v2

R + v2
I )a/2

)
,

(10)
and the envelope |v| is Weibull distributed

p(|v|) =
a

2σ2
|v|a−1 exp

(
−

1

2σ2
|v|a

)
. (11)

The kurtosis of v (as well as its variance) is a function of
the parameter a. It can be verified that for 1 < |a| ≤ 2, v is
supergaussian, characteristic that is emphasized when a → 1.
Although Weibull envelope processes have long been used to
model heavy-tailed disturbances found, for instance, in radar
detection problems [9], most authors in the communications
literature tend to resort to gaussian sum models for the same
purpose.
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