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ABSTRACT

In this paper, we propose a method based on the modification of the
channel noise variance at the equaliser input in order to improve the
performance of a turbo-equaliser. We will show a relation between
the modified channel noise variance and the a priori information
statistics. The simulation are done for 2 types of turbo-equalisers.

Keywords: EXIT chart, turbo-equalisation, APP equalisation,
interference canceler, SNR estimation.

1. INTRODUCTION

In turbo-equalisation, a decoder is combined with an equaliser to
combat intersymbol interference (ISI). The equaliser collects infor-
mation from the decoder output through the interleaver. They are
processed together with the channel observations. That way, the de-
coder output provides the equaliser with a priori knowledge about
the message. As a consequence the symbol estimation improves.
The turbo-equaliser is an iterative process introduced in 1995 [1],
inspired by the turbo-decoder [2].

Three classes of turbo-equalisers have been deeply investigated.
They make use of one of the following 3 types of soft input soft out-
put (SISO) equaliser: a posteriori probability (APP) [3], interference
canceler (IC) [4], or reduced complexity probability based equalis-
ers; in association with a SISO APP decoder. The problem with
the APP equaliser, although it provides the best results, is its very
high calculation complexity. Often one prefers using a low com-
plexity alternative algorithm. The IC is a low complexity, filter based
equaliser which shows excellent results at high signal to noise ratio
(SNR). It uses the same principle as the decision feedback equaliser
(DFE): the symbols estimated from previous iteration are fed back
through a filter in order to cancel the interferences. It makes this type
of equaliser particularly sensitive to error propagation. Finally, the
reduced complexity probability based equalisers can be viewed as a
good trade off between complexity and performance. One of them
is the DFE incorporating fixed lag smoothing [5]. It uses both the
estimated symbols throughout its memory, the channel observations
and the a priori information to estimate a symbol. The estimated
symbols are updated along the channel memory and the complexity
is not as high as the APP equaliser.

In turbo-decoding, it was proved that the knowledge of the ex-
act SNR is not mandatory to achieve sufficiently good performances.
For instance in [6] the authors showed that an SNR overestimation
does not degrade much the performances of the system in terms of

bit error rate (BER). For their experiments, they used the log im-
plementation of the APP algorithm and tested an AWGN channel as
well as a Rayleigh fading channel.

In this work, we use a modified channel noise variance at the
equaliser input in order to improve the turbo-equaliser performances.
The turbo-equaliser is composed of a DFE incorporating fixed lag
smoothing and an APP decoder.

This article is structured as follows: Section 2 describes the
turbo-equaliser using a DFE incorporating fixed lag smoothing. Next
section highlights the method used to chose the modified channel
noise variance according to the a priori information. Section 4 shows
the effect of the error variance of the feedback loop on the channel
noise variance choice.

2. TURBO-EQUALISER

2.1. Transmission model

An independently and identically distributed (iid) sequence of non
coded bits is passed through the channel encoder to produce the se-
quence cn which is interleaved and mapped using a BPSK modula-
tion. We assume that the coded and modulated symbols xt are trans-
mitted through a finite impulse response (FIR) channel with transfer
function H(z) =

PN−1
i=0 hiz

−1 where the hi are complex-valued
coefficients. We assume additive Gaussian white noise with zero
mean and variance σ2

w. The received signal is thus modeled by

yt = HT Xt + wt (1)

HT = [h0 h1 . . . hN−1] and Xt = [xt xt−1 . . . xt−N+1]
T .

Here, the operator ()T denotes the transposition operation. For sake
of simplicity, we also assume throughout this paper a BPSK modu-
lation.

2.2. Receiver structure

SISO dec.SISO eq.

π

π−1yt

Le(cn)

Le(xt) La(cn)
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σ2
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Fig. 1. Receiver structure: turbo-equaliser
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Fig. 1 depicts the general structure for turbo equalisation. We
will see that the equaliser we envisage in this paper produces at time
t + N − 1 the marginal APP for the symbol xt taking into account
observations and a priori information, up to time t+N −1. In other
words, the equaliser delivers statistical information on symbols when
they are “seen” by the channel for the last time. We denote this APP
by :
αt|t+N−1(ξ) = P (xt = ξ|Yt+N−1,La(xt+N−1) . . . La(x0))
for ξ = +1 or ξ = −1; where Yt+N−1 = {y0, y1, . . . yt+N−1}
is the sequence of observations up to time t and La(xt+N−1) the
a priori LLRs. Taking into account the interleaver, each symbol xt

corresponds to a coded bit cn.
The APP equaliser takes as prior, soft information on the coded

bits (provided by the decoder) in the form of log likelihood ratios
(LLRs) and outputs the a posteriori LLR minus the a priori LLR:

Le(xt) = log(
αt|t+N−1(+1)

αt|t+N−1(−1)
)| {z }

Lp(xt)

− log(
Pa(xt = +1)

Pa(xt = −1)
)| {z }

La(xt)

(2)

Note that the term La(xt) represents prior information on the occur-
rence probability of xt and is provided by the decoder at the previous
iteration. Therefore, Le(xt) is independent of this prior information.

Using La(cn) (i.e Le(xt) through the interleaver) as prior infor-
mation, the decoder then generates extrinsic LLR on the code bit:

Le(cn) = log(
P (cn = 1|La(c1, . . . cK))

P (cn = 0|La(c1, . . . cK))
)| {z }

Lp(cn)

− log(
Pa(cn = 1)

Pa(cn = 0)
)| {z }

La(cn)

(3)
Note that at the first iteration, the equaliser computes αt|t+N−1(ξ)

without using La(xt) since this information is not available.

2.3. The proposed equaliser

The vector Xt can be seen as the state vector of the Markov process
described by the following state equation :

Xt+1 = AXt + xt+1 ∗ [1 0 . . . 0]T (4)

where A is a shift matrix with Ai,j = 1 ↔ i = j + 1. This
Markov process is only observable through the observation equa-
tion (1). Suppose that the channel H is available. We define the
so-called forward variable, expressing the probability that the state
Xt be equal to some realisation [ξ0 . . . ξN−1]

T according to the
channel H , and the set of measurements Yt by:

αt|t(ξ0, ξ1, . . . , ξN−1) = P (XT
t = [ξ0, ξ1, . . . , ξN−1]|H, Yt)

(5)
The exact computation of this probability involves the so-called for-
ward recursion. We refer the reader to [7] for more details. This
recursion requires the calculation of the above probability for every
possible realisation of the stochastic process Xt. Such an evalua-
tion obviously requires the computation of MN probabilities at each
step. Thus, it is desirable to seek for a simplified algorithm which
permits state revisiting but does not have an exponential complex-
ity in N . Such an algorithm was presented in [5]. This algorithm
uses the marginal posterior probabilities of the symbols in the chan-
nel and has linear computational complexity in the channel duration.
We now briefly recall the forward recursion for this algorithm. We
assume in the following that the channel is known. Assume the fol-
lowing quantities be available at time t :

• the approximate filtered probabilities, α
(n)
t−1|t−1(ξ) denoting

the probability that the (n+1)th symbol in the channel mem-
ory at time t − 1 (i.e xt−n−1) be equal to ξ, knowing the
observations up to time t − 1 and the prediction of the other
symbols stored in the channel memory at time t − 1 (X(m)

t−1 ,

∀m �= n, X
(m)
t−1 denoting the (m+ 1)th component of vector

Xt−1)

α
(n)
t−1|t−1(ξ) = P (X

(n)
t−1 = ξ|Yt−1, X

(m)
t−1 = X̂

(m)
t−1|t−2)

∀m �= n ∀n = 0, . . . N − 1, ξ = 1 or ξ = −1;

• the current estimate X̂t−1 of the vector Xt−1 as given by
the previous recursion. A prediction X̂t|t−1 of vector Xt is
easily obtained by taking advantage of the shift structure of
the process Xt. Clearly we have, for n = 1 . . . N − 1

X̂
(n)

t|t−1
= X̂

(n−1)

t−1|t−1
(6)

Then by substituting X̂
(n)

t|t−1 for X
(n)
t ∀n = 1 : N − 1 we obtain

the approximate filtered probability at time t of the only component
of the state vector on which (6) does not provide information:

α
(0)
t|t (ξ) = Pa(xt = ξ)P (X

(0)
t = ξ|Yt, X

(n)
t = X

(n)
t|t−1) (7)

where Pa(xt = ξ) is evaluated using La(xt) (i.e the output of the
decoder) obtained from the previous iteration of the turbo process.
Substituting from (1) yields

α
(0)
t|t (ξ) = a

(0)
t Pa(xt = ξ)Nσ2

w
(y − m̂(ξ)) (8)

where a
(0)
t is a normalising constants, m̂(ξ) stands for the vecto-

rial product HT [ξ, X̂
(1)
t|t−1, . . . X̂

(N−1)
t|t−1 ]T , and Nσ2

w
(.) is the zero

mean Gaussian function with variance σ2
w:

Nσ2
w
(y − m(ξ)) =

1√
2πσw

exp(− (y − m(ξ))
2

2σ2
w

) (9)

In the forthcoming, L
(n)
t (ξ) denotes the quantity

Nσ2
w
(yt − HT [X̂

(0)

t|t , X̂
(1)

t|t−1, . . . , ξ, . . . , X̂
(N−1)

t|t−1 ]T ) (10)

where X̂
(n)

t|t−1 has been replaced by ξ. The remaining updated prob-

abilities α
(n)
t|t (ξ) are also approximated by applying the classical

forward recursion of the HMM formulation on conditional instead
of joint probabilities.The quantities α

(n)
t|t (ξ) recorded as smoothed

probabilities are thus obtained as

α
(n)
t|t (ξ) = a

(n)
t α

(n−1)
t−1|t−1(ξ)L

(n)
t (ξ) (11)

The equaliser presented in this section has been shown to pro-
vide a much better performance than that of a DFE [5]. Indeed, based
on a sub-optimal formulation of HMM theory, it allows to revisit the
symbol probabilities as long as the symbol is seen by the channel
memory.

The prior information provided by the decoder is used in the
calculation of the marginal probability of a symbol which is seen by
the channel for the first time (8). This prior information naturally
propagates with the forward recursion (11). Therefore, when the
equaliser delivers the LLR on symbol xt, it has taken into account
information provided by the soft decoder and it has also exploited
the time redundancy introduced by the ISI. In a sense, this equaliser
takes advantage of the ISI while the IC simply tries to compensate
for it.
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3. MODIFIED CHANNEL NOISE VARIANCE

3.1. Proposed Method

A basic principal of the turbo systems is the exchange of soft infor-
mation which allows to quantify the occurrence probability of a sym-
bol. It is important to find a judicious way to determine σ2

p so that
the equaliser output probability matches the confidence we can actu-
ally grant it with. To do so, we use the EXIT chart principle, which
is a simulation based analysis of a turbo system, that separates the
two components forming the system, and studies each of them in-
dependently of the other one [8] [9]. One component is viewed as
a device mapping a quantity of input mutual information (Ii) into a
quantity of output mutual information (Io). An important assump-
tion of the EXIT charts is that the LLRs fed back, for instance from
the equaliser to the decoder, can be modeled as iid, with a Gaussian
conditional pdf. The variance σ2

i of the LLRs at one component in-
put is linked to the mutual information at the same component input
Ii by the reversible function J . Ii = J(σi):

Ii = 1− 1√
2πσi

Z +∞

−∞
exp − (l − σ2

i
2

)2

2σ2
i

!
·log2[1+e−l]dl (12)

Although the 2 components are analysed independently we have
to bear in mind that the equaliser output is also the decoder input,
through the interleaver. Thus the statistics equality σ2

o{eq} = σ2
i{dec}

and Io{eq} = Ii{dec} should be assumed. Here, we added the sub-
script {eq} and {dec} in order to clearly differentiate the equaliser
statistics from the decoder statistics. In fact the equaliser behavior
depends on the channel observation (with noise σ2

w), σ2
p and Ii{eq}

coming from the decoder output. We want to tune σ2
p so that the two

representations of σ2 versus I match.
The original receiver (Fig. 1) is modified into a system including

a new function which determines σ2
p from the equaliser input mutual

information Ii{eq}: σ2
p = fσ2

w
(Ii{eq}). Ii{eq} is calculated from the

decoder extrinsic LLRs (using the same measurement method as for
the EXIT chart, see [8] [9] for exact equation) after each iteration.
fσ2

w
(.) is such that the equaliser extrinsic LLR statistics follow the

function σ2
o{eq} = J−1(Io{eq}).

In order to obtain the function fσ2
w

, we run EXIT simulations.
For each value of the channel noise variance σ2

w, we draw a graph
superimposing the grid of points obtained, over the graphical repre-
sentation of the theoretical function J−1 (12). Results are shown in
Fig. 2. Within the whole set of points of σo{eq} versus Io{eq}, we
select the ones in the neighborhood of the theoretical curve. We sup-
pose these points to be ideal for optimising the information exchange
between equaliser and decoder. Horizontally we read the input mu-
tual information Ii{eq}, vertically we read σ2

p parameter. The desired
function fσ2

w
(.) is then obtained by intervals. An example is shown

in the following section.

3.2. Simulation Results

Simulations have been performed on a type B Proakis channel, i.e,
H = [0.407 0.814 0.407]. The channel is assumed to be con-
stant and known by the receiver. The aim of the simulations is to
observe the effect of the proposed modification on the BER perfor-
mances of the turbo-equaliser combining a DFE incorporating fixed
lag smoothing with an APP decoder.

For each σ2
w value which is used to draw the BER curves, a

mapping table between mutual information Ii{eq} and σ2
p parameter

0.2 0.3 0.4 0.5 0.6 0.7

10
0

10
1

10
2

I
o
eq=I

i
dec

σ LL
R

o

equaliser input mutual information I
i

equaliser input param
eter σ

p 2

0.1

1.0

... 1.00.0

0.2

Fig. 2. Equaliser output variance function of the equaliser output
mutual information for different values of input mutual information
and σ2

p parameter. Channel noise variance σ2
w = 0.5. Proakis B

channel [10]

needs to be created in accordance with the previously described cri-
terion. As an example, Table 1 presents the mapping between Ii and
σ2

p for a channel noise variance σ2
w = 0.5.

Table 1. Mapping between the equaliser mutual information Ii and
the equaliser parameter σ2

p = fσ2
w
(Ii{eq}), for σ2

w = 0.5

Ii{eq} < 0.05 → σ2
p = 1.0

0.05 ≤ Ii{eq} < 0.15 → σ2
p = 0.9

0.15 ≤ Ii{eq} < 0.25 → σ2
p = 0.8

0.25 ≤ Ii{eq} < 0.40 → σ2
p = 0.7

0.40 ≤ Ii{eq} < 0.65 → σ2
p = 0.6

0.65 ≤ Ii{eq} → σ2
p = 0.5

We observe that when Ii{eq} is small, σ2
p takes larger values.

Then σ2
p gradually decreases as the input mutual information in-

creases. Eventually when 0.65 ≤ Ii{eq}, σ2
p takes the true channel

noise variance value 0.5. It is interesting to notice that the lower
bound that σ2

p reaches is the true channel noise variance σ2
w.

The performances in terms of BER of the turbo-decoder, are
plotted. Fig. 3 shows the decoder output for each of the 5 itera-
tions of the process. Compared to Fig. 3(a), where the true channel
noise variance σ2

p = σ2
w is input, Fig. 3(b) with an adapted σ2

b shows
smoother curves and reaches a better BER for any SNR.

It is well known that the a priori input mutual information of an
equaliser included in a converging turbo-equaliser is null at the first
iteration (no a priori before the first decoding step) and increases at
each iteration. It is a logical consequence that σ2

p has larger values
at the first iterations than at the last ones.

4. INFLUENCE OF THE A PRIORI ERROR VARIANCE ON
THE MODIFIED CHANNEL NOISE VARIANCE

We saw in the previous section that it is possible to improve the
equalisation by modifying the estimated channel noise variance σ2

p .
The resulting variance is function of the actual channel noise vari-
ance σ2

w and the equaliser input mutual information Ii{eq}. In a
way, the a priori information compensates for the sub-optimality of
the equaliser. The difference with σ2

w decreases with the number of
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Fig. 3. Decoder output - BER versus SNR: comparison of the
“traditional method” using σ2

p = σ2
w to the adapted method using

σ2
p = fσ2

w
(Ii{eq})

iterations as the turbo-decoder converges. In [8] and [9] the authors
suppose the a priori information at the input of the equaliser modeled
as the outputs of an AWGN channel with zero mean and variance:
σ2

a = 4/σ2
i{eq}. It is possible to observe a linear relation between

the logarithm of σ2
a that we just defined and the chosen variance σ2

p.
This relation is shown on Fig.3.2. The curves marked with ’x’ are
the actual curves obtained from simulations. On the top of it is added
the first order polynomial fitting, marked with ’o’. The slope is well
respected at every iteration.

5. CONCLUSION

In this paper, we consider a turbo-equaliser based on a sub-optimal
probability based equaliser. The channel is known by the equaliser.
In the case of reduced complexity probability based equaliser cou-
pled with an APP decoder, we say that the influence of each com-
ponent should not be equal in the process. We demonstrate that we
can use the channel noise input of the equaliser to tune the system.
The BER simulations improve thanks to this method. Finally, we
highlight a relation between the chosen variance σ2

p and the error
variance σ2

a at the equaliser input. The aim of this work is to obtain
in the future an analytical way to predict the optimal value of the
parameter σ2

p.

4 3 2 1 0 1 2 3
0

0.5

1

1.5

Iteration 2 >5σ
2 p

log(σ2
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Fig. 4. σ2
p vs log(σ2

a)
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