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ABSTRACT

The MMSE turbo equalizer has excellent performance
with moderate complexity. Current realizations of an MMSE
turbo equalizer usually assume the equalizer output is Gaus-
sian, which, however, may not be true for channels with
co-channel interference (CCI). In this paper, we first show
that, in presence of CCI, a linear pre-whitener is required to
decorrelate the CCI-plus-noise. Then we apply density es-
timation for the residual noise at the equalizer output to fur-
ther improve the performance. Numerical simulations are
also shown to verify the analysis.

1. INTRODUCTION

The turbo MMSE equalizer can achieve good performance
by iteratively exchanging soft information, or the loglikeli-
hood (LLR), between the equalizer and decoder [1, 2]. A
common problem of previous approaches is that they as-
sume the residual noise at the equalizer output is Gaussian,
which, however, may not hold in real applications. This
is because in many systems, besides ISI and the Gaussian
noise, the channel also suffers from co-channel interference
(CCI) which, for example, may come from a nearby system
operating in the same frequency band or a unknown user in
the adjacent cell in mobile communications. The presence
of CCI-plus-noise brings two problems to the current SISO
MMSE equalizer design: First, since usually the CCI sig-
nals are also transmitted through multipaths, the CCI-plus-
noise is not white and the corresponding correlation matrix
is not diagonal. Thus in general, the full knowledge of the
CCI channel, which is unfortunately not available in most
cases, is required to obtain the MMSE equalizer. Second,
with CCI, the channel noise is normally a Gaussian mixture,
as is the residual noise at the equalizer output, resulting in
performance loss if the equalizer still retains the Gaussian
assumption.

The main task of this paper is, therefore, to propose
methods to overcome these problems. We will show that
the first problem can be solved by processing the received
signal with a linear pre-whitener which, as shown in [3],

can perfectly decorrelate the CCI-plus-noise. For the sec-
ond problem, we may resort to the kernel density function
[4] to on-line estimate the probability density of the residual
noise. One of the main difficulties is that the residual noise
is not directly observable, but, as will be shown later in this
paper, can only be constructed with training sequences. Al-
though sometimes training sequences used for channel esti-
mation may also be used for the density estimation, in many
cases, the training sequences are not available. A possible
alterative is to use the hard decision of the equalizer output
which is, however, not reliable as it is highly dependent on
the accuracy of the currently detected symbol. In the turbo
equalization system, fortunately, the a priori information fed
back from the decoder can be used to form self-generated
training symbols. The use of the a priori information is
much more robust than directly handling the equalizer out-
put not only because the decoder always gives lower bit-
error-rate (BER) output than the equalizer, but also because
the a priori information feedback from the decoder, due to
the deinter-/inter-leaver, can be regarded as “independent”
from the current detected symbols, preventing error propa-
gation.

2. MMSE EQUALIZER WITH PRE-WHITENER

First, we introduce frequently used notation in this paper:
Cxy = E[xyH]−E[x]E[yH], Rxy = E[xyH] and x̄ = E[x].

Assuming the length of the equalizer is Nf , the received
vector can be expressed as

y(n) = H · x(n) + w(n), (1)

where H is the Nf × (Nf + Nh − 1) channel matrix, Nh

is the channel length, x(n) is the channel input and w(n) is
the channel CCI-plus noise vector which is again given by
w(n) = wg(n)+wc(n), where the last two terms represent
the Gaussian channel noise and CCI vectors respectively.

Minimizing the cost function of E|x(n−∆)−(fH(n)y(n)
+d(n))|2, and removing the influence of the a priori in-
formation for the current symbol, gives the SISO MMSE
equalizer as [1, 5]:

f(n) = K(n)C−1
yy (n) · p(n), (2)
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where K(n) = [1 + (1 − σ2
x(n − ∆)]−1, ∆ is the decision

delay, p(n) = σ2
x(n − ∆)h∆, h∆ is the (∆ + 1)th column

of H and σ2
x(n) = E[x2(n)] − x̄2(n).

Assuming w(n) has zero mean, we have ȳ(n) = Hx̄(n),
substituting into the definition of Cyy(n) gives
Cyy(n) = Ryy(n) − Hx̄(n)x̄H(n)H, where Ryy(n) =
HRxx(n)HH + Rww(n) and

Rww(n) = σ2
gI +

K∑

k=1

Hck
HH

ck
(3)

where σ2
g is the variance of the Gaussian noise and Hck

is
the channel matrix for the kth CCI user. It is clear from
(3) that, if at least one of the CCI channels’ memory is
larger than one, Rww(n) is not diagonal, and the assump-
tion of Rww(n) = σ2

wI, as was used in previous approaches
(e.g. [1]), leads to performance degradation. Thus, the
calculation of Cyy(n) requires full knowledge of not only
the transmission but also the CCI channels which, unfor-
tunately, are not available in most cases. Moreover, in the
SISO MMSE equalizer, Rxx(n) is a function of the a pri-
ori information which normally varies with time, making
Ryy(n) vary with time as well. This implies that the tradi-
tional time average can not be used to estimate Ryy(n).

To solve this problem, a linear pre-whitener can be ap-
plied on the channel output before equalization. The equal-
izer input vector then becomes:

y′(n) = H′ · x(n) + w′(n), (4)

where H′ = PwH, w′(n) = Pww(n) and Pw is the pre-
whitener matrix. Since it is known [3] that a pre-whitener
can decorrelate the CCI-plus-noise, we have

Rw′w′(n) = σ2
w′I, (5)

where σ2
w′ = (σ2

g + σ2
c )pH

wpw, σ2
c is the interference power

and pw the pre-whitener vector. Then the MMSE equal-
izer can be obtained by regarding y′(n), H′ and w′(n) as
the equivalent equalizer input, channel matrix and channel
noise respectively. Supposing the length of the pre-whitener
is Np, the equivalent channel memory becomes Nh+Np−1,
which means a longer equalizer should be applied.

3. TURBO EQUALIZER WITH DENSITY
ESTIMATION

3.1. Density of the Residual Noise

For clarity of exposition, only the BPSK system is consid-
ered, but the results can be readily extended to more ad-
vanced systems.

When x(n − ∆) = αi (αi = ±1), the output from the
MMSE equalizer can be expressed as

z(n) = E[z(n)|αi] + zw(n), (6)

where E[z(n)|αi] is the mean of z(n) on the condition of
x(n − ∆) = αi, and zw(n) is the residual noise, which can
be expressed as

zw(n) = zx(n) + zg(n) + zc(n), (7)

where zx(n) is the residual ISI, zg(n) and zc(n) are the
noise and CCI after passing through the pre-whitener and
equalizer respectively. Assuming there are K CCI users,
we have zc(n) = zc,1(n) + · · · + zc,K(n), where zc,k(n)
corresponds to the kth CCI signal which is given by

zc,k(n) = f(n) ⊗ pw(n) ⊗ hck
(n) ⊗ xck

(n), (8)

where f(n), pw(n), hck
(n) are the impulse responses for

the equalizer, pre-whitener and kth CCI channel respec-
tively, and xck

(n) is the transmitted signal from the kth CCI
user. We assume each CCI user transmits either +1 or −1
with binary distribution of fxck

(x) = 1/2·[δ(x−1)+δ(x+
1)].

It is clear from (8) that, zc,k(n) has 2Nz,k possible val-
ues, where Nz,k = Nf + Np + Nck

− 2 and Nck
is the kth

CCI channel length. Then zc(n) has 2Nz possible values,
where Nz = Nz,1 + · · · + Nz,K . Thus the density of zc(n)
is given by

fzc(x) =
1

2Nz

2Nz∑

i=1

δ(x − z(i)
c ), (9)

where z
(i)
c is the ith realization of zc(n). Similarly, for a

given x(n − ∆), the density of zx(n) can be obtained as

fzx(x) =
1

2Nx−1

2Nx−1∑

i=1

δ(x − z(i)
x ), (10)

where Nx = Nf +Np+Nh−2 and z
(i)
x is the ith realization

of zx(n).
We assume wg(n) is Gaussian, so is zg(n). Finally,

from (7), the convolution of (9), (10) and the Gaussian dis-
tribution of zg(n) gives the density of zw(n) which is given
by

fzw(x) =
1

2Nw

2Nz∑

i=1

2Nx−1∑

j=1

gzg (x − z(i)
c − z(j)

x )

=
1

2Nw

2Nw∑

i=1

gzg (x − z(i)
w ),

(11)

where Nw = Nz + Nx − 1, z
(i)
w is the ith realization of

zw(n) and gzg (x) is the Gaussian density of zg(n).
It is clear from (11) that, in general, the residual noise is

a Gaussian mixture. But if there is no CCI, the density of the

IV ­ 438



residual noise can be well approximated by a Gaussian dis-
tribution because the residual ISI zx(n) is normally small.
With CCI, on the other hand, especially when some of the
CCI are particularly strong, the residual noise is obviously
a Gaussian mixture.

3.2. Density Estimation

Assuming the CCI-plus-noise has zero mean, we have
E[z(n)|αi] = αi · µz(n), where µz(n) = f ′(n)h∆, substi-
tuting into (6) gives

zw(n) = z(n) − αi · µz(n). (12)

The density of zw(n) can be estimated by applying the ker-
nel density function:

fzw(x) =
1
N

N∑

i=1

Φ(x − zw(n)), (13)

where N is the number of samples. In this paper, the Gaus-
sian kernel is used so that

Φ(x) =
1√

2πσ2
e−

x2

2σ2

where σ can be chosen as (see [4]) σ = σzw
· N−1/5, and

σzw is the standard deviation of zw(n). With (13), the LLR
of z(n) can be obtained as

LLR(z(n)) = ln
P(z(n)|αi = +1)

P(z(n)|αi = −1)
= ln

fzw (x − µz(n))

fzw (x + µz(n))

Without channel coding, and assuming the MMSE equal-
izer cancels most of the ISI, near optimum decision can
be achieved by a one-symbol ML detector, i.e. the deci-
sion is +1 if LLR(z(n)) > 0 and vice versa. In gen-
eral, the one-symbol ML decision gives better performance
than the hard decision. But if fzw

(x) is symmetric (i.e.
fzw(−x) = fzw(x)), and satisfies

fzw(x − µz(n)) > fzw(−x − µz(n)), (14)

for any x > 0, it can be easily verified that the one-symbol
ML detector is equivalent to the hard decision with thresh-
old at 0. It is clear from (11) that the symmetric condition is
always satisfied, and the condition of (14) is equivalent to

µ2
z(n) > max

i

2(z(i)
w ), (15)

where µ2
z(n) is in fact the signal power at the equalizer out-

put and max2(z(i)
w ) reflects the output CCI power. Thus

(15) holds when the channel SIR > βdB (and vice versa),
where, roughly speaking, β is about equal to 0.

We note that a one symbol ML decision based on the
Gaussian assumption is equivalent to the hard decision [6],
which means that, when SIR > βdB, the Gaussian assump-
tion is good enough and estimating the density in a uncoded
system is not necessary.

3.3. The Modified Turbo Structure

In turbo equalization, the LLR is iteratively exchanged be-
tween the equalizer and decoder, and the decision is not
made until satisfactory performance is reached. Under such
a scenario, the density estimation of the residual noise be-
comes significant because it gives better accuracy of the
LLR at the equalizer output, which again improves the de-
coding performance.

It is clear from (12) that training symbols are required to
obtain zw(n), and then fzw

(x). If the training symbol is not
available, the hard decision of the equalizer output may be
used as an alternative. However, the hard-decision is unli-
able to apply as it is too strong a feedback which highly de-
pends on the accuracy of the current decision, causing error
propagation. In fact, as will shown in an example later, den-
sity estimation using the direct hard decision usually gives
little performance improvement. In the turbo MMSE equal-
izer, fortunately, the training symbols can be replaced by the
hard decision of the feedback a priori information from the
decoder which, as has been explained in the introduction,
is much more reliable than directly handling the equalizer
output.

With the above analysis, the structure of the modified
turbo MMSE equalizer is shown in Fig. 1, where the chan-
nel output is first pre-whitened before processed by the equal-
izer, and the kernel density function then estimates the den-
sity of the residual noise, based on which the LLR is gener-
ated and, after being interleaved, forwarded to the decoder.
We highlight that, at the first iteration when no a priori infor-
mation is available, the hard decision of the equalizer output
is used for the density estimation.

z(n)� � � �

�

� �

�

�

�

� �Pre-
whitener Equalizer

Kernel density
estimation

De-
Interleaver Decoder

Hard
Decision

Interleaver

First After first
iterationiteration

LLR(x(n))

y′(n)y(n)

Fig. 1. The turbo MMSE equalizer with density estimation.

4. SIMULATION RESULTS

In this section, numerical simulations are shown to verify
the above analysis. First, we consider a system with no
channel coding, where the channel vector is [0.9325 0.2798
0.1865 0.0933 0.0933]T, there is one CCI user in the system
with channel vector of [0.1925 0.9623 0.1925]T, the chan-
nel SNR = 14dB, 1024 symbols are transmitted, the lengths
of the pre-whitener and equalizer are 2 and 10 respectively,
and 100 symbols are used for the density estimation.
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Fig. 2 shows the BER curves with respect to the SIR for
the hard decision and the one-symbol ML decision based on
the kernel density estimation using training-symbols and di-
rect hard-decision respectively. It is clear that, when SIR<
0.5dB, the ML decision using training symbols has signifi-
cantly better performance than the hard decision, but, as ex-
pected, has no advantage over the latter when SIR> 0.5dB
since then (14) is satisfied. It is also shown that the ML de-
cision using the hard decision of the equalizer output gives
no performance improvement at all.
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Fig. 2. BER vs SIR for a uncoded system.

For the following experiments, a half rate convolutional
code with coding vectors of [1 0 1]T and [1 1 1]T is added
to the system. At the receiver, the modified turbo equalizer
shown in Fig. 1 is used to recover the original data. The
iteration number is set to be 5.

As an example, Fig. 3 shows, when SIR= −2dB, the
density of the residual noise obtained by the kernel den-
sity function using the training symbols, a priori informa-
tion and direct hard decision respectively. It is clear that the
density obtained by training symbols and a priori informa-
tion are close, all demonstrate Gaussian mixture. But the
density estimation based on the direct hard decision devi-
ates significantly from the other two.
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Fig. 3. The density of the residual noise (SIR= −3dB)

Fig. 4 shows the BER with respect to the SIR for the
decoder output. It is obvious that the performance of the
receiver based on the kernel density estimation using the
training symbols and a priori information are almost same,
and both are better than that based on the white Gaussian
assumption.
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Fig. 4. BER vs. SIR for turbo MMSE equalizer

5. CONCLUSIONS

This paper investigated the turbo MMSE equalizer for chan-
nels with CCI. First we showed that a pre-whitener is neces-
sary to decorrelate the CCI-plus-noise, then, after studying
the density of the residual noise, we used the kernel density
function to estimate its density. Finally numerical simula-
tions were given to verify the analysis.
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