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ABSTRACT

In this paper, we present an adaptive FIR equalizer which
reduces power dissipation by employing a new algorithmic
error correction technique. Building on the voltage over-
scaling (VOS) technique, we formulate the statistical esti-
mation of timing errors that may be caused by VOS, called
soft errors to detect and cancel them at a system level. We
derive a minimum variance unbiased estimator, and develop
an adaptive and power-optimized algorithm for an adaptive
equalizer. Up to 30% power savings are demonstrated with
negligible performance loss for an example, 16-tap mini-
mum mean square error (MMSE) FIR equalizer.

1. INTRODUCTION

Due to growing power demands of portable and wireless ap-
plications, low-power techniques in digital signal process-
ing (DSP) area gained importance. A wide variety of tech-
niques have been proposed to reduce power in DSP systems
[1]-[5]. Among them, supply voltage scaling is often used
to achieve the significant power savings due to the quadratic
dependency of power on supply voltage [1, 2].

In practice, due to increased execution delay at reduced
voltage, the extent of supply voltage reduction is limited
by timing constraints. Therefore, current voltage scaling
methods have performed supply voltage reduction up to the
point that the critical path delay at the given supply voltage
is equal to the sampling period, to avoid timing errors.

However, an approach referred to as voltage overscaling
(VOS) [3, 4] has shown that the supply voltage might be
scaled further for additional power savings, i.e.

Vdd = kvosVdd−crit , 0 < kvos < 1 (1)

where kvos is voltage overscaling factor and Vdd−crit is the
supply voltage at which the critical path delay equals to the
sampling period. The VOS technique is often used in con-
junction with algorithmic noise tolerance (ANT) which mit-
igates transient errors caused by timing violations, called
soft errors [3]. Mitigation of soft errors is crucial for suc-
cessful power savings via VOS.

Previous techniques to mitigate soft errors includes pre-
diction based error control (PEC) [3], which removes soft
errors at the digital filter output by using a forward linear
predictor. A reduced precision redundancy (RPR) [4] ap-
proach replaces the potentially corrupted output with the
output of a reduced precision replica of the main system,
when an error is detected.
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Fig. 1. Proposed soft error canceller.

In this paper, we introduce a low-power adaptive FIR
equalizer which employs an iterative and power-optimized
soft error canceller. In this technique, soft errors are esti-
mated based on a subset of observed signals, and once de-
tected, they are removed from the output of equalizer, as
shown in Fig 1.

The remainder of this paper is organized as follows. In
Section 2, we derive the soft error estimate based on the
minimum variance criterion and provide its performance
analysis. In Section 3, simulations and results are presented
and in Section 4, some conclusions are given.

2. SOFT ERROR CANCELLATION

In this section, we first describe a soft error model. Then, we
introduce a minimum variance unbiased soft error estima-
tor, called MVU-SE, and its adaptive and energy minimum
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algorithm.

2.1. Soft Error Model

In many traditional designs, soft errors will tend to appear
near the most significant bit (MSB) in the binary represen-
tation of the output signal, due to the use of least signifi-
cant bit (LSB)-first computation for most arithmetic units.
Specifically, some MSBs whose increased path delays are
larger than the sampling period may not retain proper val-
ues, possibly causing soft errors. Hence, the output bits
of the arithmetic unit become divided into two sets : error
prone bits (EB) where the timing condition may be violated
and safe bits (SB) where the timing relation is guaranteed.
Soft errors can be expressed as a combination of bits from
the EB region, and their magnitudes become a multiple of
2M/2B where B and M are the number of output bits and
SBs, respectively. This property, which we refer to as a
spacing property, plays a key role in estimating soft errors.
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Fig. 2. Flow graph of a direct form I FIR filter : (a) ideal
model (b) soft error model.

To illustrate how soft errors appear at the output of FIR
filter, we consider a 2N + 1 coefficients FIR filter depicted
in Fig 2 (a). An equivalent additive linear model of the FIR
filter in the presence of soft errors can be represented in
Fig 2 (b). In this model, soft error signal denoted αi for ith
multiplier and βi for jth adder are injected to each process-
ing unit. Hence, the soft error signal θn at the output can be
expressed as

θn =
2N∑
i=0

αi,n +
2N−1∑
i=0

βi,n. (2)

Due to the spacing property, θn takes on a value in the dis-
crete set, Ω =

{
k2M/2B |k ∈ Z, k ∈ [−2B/2M , 2B/2M

)}
where B is the number of bits of precision of the output and

M is the smallest number of SBs of all processing units. In
the presence of soft errors, the output zn of a 2N + 1-tap
FIR filter under VOS is written

zn = yn + θn =
N∑

k=−N

ckxn−k + θn, (3)

where xn and yn are the nth samples of the input and error-
free output respectively, and {ck} is the impulse response
of equalizer.

2.2. Minimum Variance Unbiased Soft Error Estimator
(MVU-SE)

Assume that the input and error-free output signals, xn and
yn of the equalizer are zero mean Gaussian random pro-
cess. The soft error estimator makes its decisions based
on observations of a subset of

{
X = {xn+N , · · · , xn−N},

Ŷ = {ŷn−1, · · · , ŷn−L}, zn

}
where ŷn is the nth sample

of corrected output. The collection of observations is ex-
pressed in matrix form as

⎡⎣ zn

xn

ŷn−1

⎤⎦ =

⎡⎣ yn

xn

ŷn−1

⎤⎦ + θn

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ (4)

where xn and ŷn−1 are column vectors whose entries are
selected from X and Ŷ , respectively. The linear unbiased
estimate of θn is expressed as linear combination of the ob-
servations, i.e.

θ̂n = a0zn +
[
aT b

T
] [

xn

ŷn−1

]
(5)

where a = [a−N1 , · · · , aN1 ]
T , and b = [b1, · · · , bN2 ]

T . If
we assume that the system is operating in a low-error-rate
regime, such that the vector ŷn−1 does not contain errors,
then we may assume that ŷn−1 has the same statistic as
yn−1. Therefore, to satisfy the unbiased constraint, it is
clear that a0 = 1. The vectors, a and b are determined to
minimize the variance of the estimator θ̂n, i.e.,

VAR(θ̂n) = E

[(
yn +

[
aT b

T
] [

xn

ŷn−1

])2
]

. (6)

The estimator coefficients a and b are obtained as minimum
mean square error (MMSE) estimate of yn based on xn and
ŷn−1. The optimal coefficients, a0 and b0 are given by[

a0

b0

]
= −Cov

([
xn

yn−1

])−1

Cov
(

yn

[
xn

yn−1

])
(7)

where yn−1 consists of the error-free output signal corre-
sponding to ŷn−1. The MVU-SE exploits the correlation
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structure between the input and output signals in the equal-
izer to correct errors. However, since θn takes on a value in
the set Ω, the estimate of θn should be in Ω. Therefore, the
final estimate of θn, or θ̃n is obtained by mapping of θ̂n into
the closest value in Ω, i.e.,

θ̃n =
2M

2B
i

where

∣∣∣∣θ̂n − 2M

2B
i

∣∣∣∣ ≤ ∣∣∣∣θ̂n − 2M

2B
j

∣∣∣∣ for ∀j. (8)

The corrected output of the equalizer is then obtained by
subtracting θ̃ from the noisy output, zn, i.e.,

ŷn = zn − θ̃n = yn + (θn − θ̃n). (9)

The term θn− θ̃n is the residual error which will corrupt the
desired output yn. It should be noted that MVU-SE employs
the previous decisions to estimate the current soft error sig-
nal, and hence operates in a decision feedback mode.

2.3. Residual Mean Square Error (RMSE) Analysis

In this subsection, we derive an estimate of the mean squared
residual error, θn − θ̃n, (RMSE). Since the amplitude of
residual error is a multiple of 2M/2B , an upper bound on
the RMSE is given by

E
[
(θn − θ̃n)2

]
≤

∞∑
k=−∞

(ηk)2 P
((

θn − θ̃n

)
= ηk

)
(10)

where η = 2M/2B . If we assume that the estimator coeffi-
cients a and b converge to a0 and b0 in (7), then the variance
of θ̂n is given by

VAR(θ̂n) = E
[
y2

n

] − [
a0

b0

]T

Cov
([

xn

ŷn−1

]) [
a0

b0

]
(11)

and θ̂n approximately follows N (θn, VAR(θ̂n)) in the low
error-rate regime. Based on the rule, (8), the bound of RMSE
can be given by

E
[
(θn − θ̃n)2

]
≤ 2η2

∞∑
k=0

k2Qk

(
η

VAR(θ̂n)

)
, (12)

where Qk(x) = Q
(
x(k − 1

2 )
)−Q

(
x(k + 1

2 )
)

and Q(x) =∫ ∞
x

1√
2π

exp(−t2/2)dt. Note that the RMSE bound de-

creases monotonically as VAR(θ̂n) decreases.

2.4. Energy Minimum Soft Error Canceller

In this subsection, we develop an adaptive procedure to ap-
proximates the optimal estimate for an equalizer whose co-
efficients vary with time. This can be formulated as an

algorithm for adapting a and b. The simple least mean
square (LMS) algorithm can be used to approximately find
the MMSE estimate in (7) in an iterative manner :[

a

b

]
n+1

=
[
a

b

]
n

+ µen

[
xn

ŷn−1

]
(13)

where the LMS error signal, en is given by

en =

(
ŷn −

[
a

b

]T

n

[
xn

ŷn−1

])
, (14)

and µ is the step size parameter.
A conflicting goal is to optimize the power dissipation

of the error canceller. The soft error estimator (SE) can be
optimized by minimizing the power dissipation of the SE
block subject to a performance constraint i.e.

Minimize : P (N1, N2) (15)

Subject to : E
[
(θn − θ̃n)2

]
≤ τ (16)

where P (N1, N2) is the power dissipation of SE block and
τ is a desired power of residual error. We assume that the
power dissipation, P (N1, N2) is proportional to the number
of coefficients, N1+N2 and replace N1+N2 in (15). Based
on the following relationship,

θn − θ̃n = ŷn − yn (17)

� ŷn − E

[
yn

∣∣∣ [
xn

ŷn−1

]]
= en, (18)

the power of residual error can be estimated by time-averaging
the squared LMS error signal, i.e.,

Pn+1 = δPn + (1 − δ)e2
n (19)

where Pn is the residual error power estimate at the time
n and δ is a constant between 0 and 1. To control power
dissipation of SE block, we define a control vector c =
[c1, · · · , cN1 ]

T . The ith coefficient ai and its update sub-
block are powered on if ci = 1 and off if ci = 0. The
estimate, Pn is monitored in real time and compared with
the preset threshold, τ . Starting from c = [1, · · · , 1], we set
ci = 0 if Pn is smaller than τ − λ where i corresponds to
smallest |ai| and λ is some positive constant. On the con-
trary, we set ci = 1, if Pn becomes larger than τ . Note that
whenever c changes, the adaptive algorithm runs until the
a and b vectors converge. This procedure is summarized in
Table 1.

A block diagram of the MVU-SE is depicted in Fig 3.
The mapping, (8) is realized by a minimum distance detec-
tor (MDD) which rounds the input signal into the nearest
integer multiple of 2M/2B [5].
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Table 1. Power optimization algorithm
step 1 Start with c = 1, a = [cn−N , · · · , cn + N ]T ,

and b = 0.
step 2 If the equalizer coefficients converge, then set

ci = 0 if Pn − τ ≤ −λ for the smallest |ai|.
step 3 Set ci = 1 and ai = 0 if Pn − τ > 0
step 4 Run (13) until a and b converges. Then go to

step 2.
step 5 If the equalizer coefficients begin updating, go

to step 1.
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Fig. 3. Block diagram of soft error estimator.

3. SIMULATIONS

As an example, a 16-tap adaptive FIR MMSE equalizer is
employed in a binary phase shift keying (BPSK) system.
We assume a moderate dispersive intersymbol interference
(ISI) channel whose span is within 4 sample periods with
additive white Gaussian noise (AWGN). All computations
in the equalizer are performed with 8 bit two’s comple-
ment arithmetic. Soft errors are emulated by computing tim-
ing constraints via 0.25µm, 2.5V CMOS process logic-level
simulations.

Table 2. MSE and energy savings for several kvoss.
kvos MSE Energy Savings (%)

1.0 −20 dB 0.0 %
0.9 −20 dB 17.7 %
0.8 −19.8 dB 23.3 %
0.7 −18.7 dB 37.5 %

The numerical precision of the soft error estimator is set
to 4 bits. We set N2 to 2 to limit the effect of error prop-
agation and adjust N1 to minimize power dissipation. Ta-
ble 2 provides the mean squared error (MSE) of the MMSE
equalizer after it converges and the measured power sav-

ings when employing the MVU-SE. It is shown that we can
achieve up to 37 % power savings with only a 1.3 dB loss
in MSE.

Fig 4 shows that the power optimization and correspond-
ing soft error estimator applied for a the time-varying chan-
nel. Note that power optimization algorithm adapts the num-
ber of estimator coefficients to the change of the equalizer.
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Fig. 4. (a) Instantaneous absolute value of error signal εn of
the 16-tap equalizer, and (b) change of the number of coef-
ficients a, or N1. The underlying channel abruptly changes
at sample n = 3000 and sample n = 6000.
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