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ABSTRACT

We introduce a new blind phase offset estimator for general

Quadrature Amplitude Modulated (QAM) signals. The esti-

mator is based on the computation of a suitable phase distri-

bution that we call “Signature”. The Signature is defined as

the phase-dependent distribution of the received signal mag-

nitude after the application of a nonlinear transformation.

The Signature of a QAM signal is constituted by a dis-

crete number of pulses and it has good autocorrelation proper-

ties in the sense of maximum/side-lobe ratio. Since the effect

of a phase offset is a cyclic shift of the Signature, the phase

offset can be estimated by searching for the maximum of the

cyclic cross-correlation between the zero-phase Signature of

the expected constellation, and the Signature calculated on

the received signal. The resulting estimator is characterized

by a low computational complexity and does not need gain

control. The comparison shows that the presented estimator

is asymptotical efficient and outperforms existing estimators

for medium to high values of SNR, especially for complex

constellations.

1. INTRODUCTION

The problem of phase estimation in baseband QAM systems

is here addressed. This problem is very important in syn-

chronous systems using high-speed signaling. In the recent

literature several approaches for blind phase estimation have

been proposed. In [1] an estimator based on a set of fourth-

order statistics, which does not need any gain control, is de-

rived. In [2] the estimator described in [1] has been proved

to be equivalent to the fourth-power estimator presented in

[3], that in turn approximates the maximum-likelihood es-

timator in the limit of small signal to noise ratios (SNRs).

In [4] an estimator based on eighth-order statistics gives im-

proved performance for cross QAM systems with respect to

the fourth power phase estimator [1], while less observed

samples are needed. A phase estimator based on a modifica-

tion of the received constellation is presented in [5], while in

[7] a nonlinear filtering is performed in order to retain only

constellation points more “reliable” for the phase estimation.

Recently, in [6] a phase estimator based on evaluating the

concentration ellipses of the fourth power of the received

data is presented. The estimator outperforms in large SNR

ranges the estimators [1], [4].

This paper introduces a new blind phase offset estimator

for general Quadrature Amplitude Modulated (QAM) signals,

based on the observation of the distribution of the power of

the received signal samples, transformed by a suitable nonlin-

ear function. The paper is organized as follows. In section II

we introduce the model of the received signal and in section

III we describe the phase estimator. The effect of additive

noise is addressed in section IV. The analytical evaluation of

performance is reported in section V and finally section VI

shows results of numerical experiments and comparison with

selected existing estimators.

2. DISCRETE-TIME SIGNAL MODEL

The analytical model of the signal, resulting from the sam-

pling at symbol rate of the complex low-pass version of the

receiver output, can be written as follows:

Y [n] = GC e
j X[n] +W [n] (1)

where GC is the overall gain seen by transmitted symbols

X[n] drawn from a QAM constellation indicated as A nor-
malized to have unitary variance, and the unknown carrier

phase offset that has to be estimated is denoted by .

It is further assumed that W [n] is a realization of circu-
larly distributed complex Gaussian stationary process, statis-

tically independent of X[n]. The signal-to-noise ratio (SNR)

is defined as SNR
def
=G2C/

2
W , being

2
W

def
=E

©
|W [n]|2

ª
the

noise variance.

Suppose we have a sample of N consecutive observations
Y [n], let’s say for n = 0, · · · , N 1, that can be used to
estimate the carrier phase offset.

The phase offset estimate is affected by a /2 ambigu-
ity interval caused by the quadrant constellation symmetry;

hence, the estimator extracts in the interval /4, /4,
leaving to other training-based procedure the recover of the

complete phase offset.
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3. ROUGH PHASE ESTIMATION

The phase estimator description starts with the analysis of

the Signature shape for QAM signals. The Signature is de-

fined as the phase-dependent distribution of the received sig-

nal magnitude after the application of a suitable nonlinearity

transformation The selected nonlinearities have the following

form:

Z[n] = |Y [n]|P · ej4·arg{Y [n]} (2)

and they have been considered also in [10]. The order P
of the magnitude influences the performances with respect

to the additive noise whereas the 4-fold of the phase simply

reflect the estimation ambiguity interval of /2.

Dividing the interval 2 in L bins, the received signal
Signature F̂P [k] can be expressed as follows:

F̂P [k] =
1

N
·

X

n:arg{Z[n]} [ 2 ·k
L ,

2 ·(k+1)
L ]

|Z[n]| (3)

where k takes values in the set 0 . . . L 1.

Considering the constellation A = {S0, .., SM 1}, in ab-
sence of noise and with perfect points distribution, the ana-

lytical expression of the Signature for a QAM signal is given

by:

FAP [k] =
1

M

M 1X

m=0

|Sm|
P rect2 /L (( /4 arg{Sm}) (4)

Fig.1 shows some common constellations Signatures in

absence of additive noise.

The effect of a phase offset on the Signature is a cyclic

shift on the finite support 0, . . . , L 1 . Since the autocor-
relation of the Signature has a clear identifiable maximum, a

rough estimation of the phase offset can be obtained finding

the maximum of the cyclic cross-correlation between the ex-

pected Signature and the Signature calculated on the received

signal. We define this estimate as rough because, being the

Signature evaluated on a discrete number of samples (L), the
estimate will be affected by the corresponding quantization

error.

So, the rough phase estimate 0̂ for a QAM signal using

constellation A can be obtained as follows:

C[k]
def
= F̂P [k] FAP [k] (5)

0̂ =
2

L
· argmax

k
{C[k]} (6)

The cyclic cross-correlation can be carried out by a sin-

gle Fast Fourier Transform (FFT); moreover, the expected

Signature, or its FFT, can be calculated and stored a priori.
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Fig. 1. Noise free Signatures for common constellations

(L = 512, P = 4).

4. ESTIMATION IN PRESENCE OF ADDITIVE

NOISE

In the received signal domain, the constellation points are ob-

served in additive noise. The noise has a convolutive effect

on the Signature, since it spreads the constellation point loca-

tion and smooths the Signatures. Fig.2 shows the same Sig-

nature of Fig.1, now with additive noise and SNR = 23dB.
Since the Signature are degraded by the noise, the Signature

autocorrelation will result more smooth and, consequently,

the phase estimate more dispersed.

The effect of the additive noise can be in part compen-

sated modifying the Signature and using, as expected Signa-

ture, the one that corresponds to the known level of SNR.

The shape of the noisy Signature can be analytically eval-

uated. Details of this derivation are not reported here, but

the general expression of the noisy Signature can be found

to be a continous function of the phase (L ), namely:

fAP ( ) =
1

M

M 1X

m=0

e

2
m
2
W ·G0P ( , m, m, W ) +

e

2
m sin2(( 4 m)/4)

2
W GSP ( , m, m, W ) +

e

2
m cos2(( 4 m)/4)

2
W GCP ( , m, m, W )

where the functionsG0P (· · · ), G
S
P (· · · ), andG

C
P (· · · ) depend

on the order P of the magnitude nonlinearity.
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Fig. 2. Noisy templates for common constellations

(L=512,P=4,SNR = 23dB).

The evaluation of fAP ( ) need the knowledge of the SNR,
that can be estimated through channel measure in absence of

signals.

The Signature in case of L finite but large enough can
be approximated by sampling of fAP ( ) in the points =
2 k/L with k = 0 . . . L 1.

The quantization error of the rough estimate can be re-

duced through an interpolation of the values assumed by

the cross-correlation around the maximum. For example

a parabolic interpolation of the cross-correlation function

brings to the following formula for the fine estimate 1̂:

1̂ = 0̂ +
2

L

C[k̂ + 1] C[k̂ 1]

C[k̂ + 1] + C[k̂ 1] 2C[k̂]
(7)

where k̂ is the lag of the cross-correlation maximum value.

We have also conducted an analytical evaluation of per-

formance that is not reported here due to the space limitation.

Finally, let us observe that the non-equal population of

the received signal constellation points gives rise to the so-

called self-noise, present also in high SNR. However, since

the self-noise modifies the relative height of the different

Signature pulses, but does not modify the position of the

pulses, it is implicitly rejected by the cross-correlation based

estimator.

5. NUMERICAL EXPERIMENTS

Some numerical experiments have been conducted to com-

pare the performance of presented estimator with selected ex-

isting estimators. Figs. 3-8 shows the asymptotical standard

deviation of phase estimate versus SNR, the experiment con-

sist in 500 Monte Carlo trials and the phase offset is random
trial by trial. Figs. 3, 5 and 7, that corresponds to square

constellation, have been obtained with N = 500, whereas
Figs. 4, 6 and 8, that corresponds to cross constellation, have

been obtained with N = 2000. Note the excellent agreement
between analytical performance and numerical results.

All the figures shows a substantial performance gain for

all the constellations at medium-high SNR values; the gain

is effective for complex constellations. This is mainly due to

the self-noise compensation, in fact the maximum of cross-

correlation between Signatures does not vary with the con-

stellation points distribution. The method [10] shows com-

parable results only for the QAM16 constellation.
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Fig. 3. Phase estimator standard deviation vs. SNR for

QAM16 constellation (N = 500, L = 512, P = 1).
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Fig. 4. Phase estimator standard deviation vs. SNR for

QAM32 constellation (N = 2000, L = 512, P = 1).
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Fig. 5. Phase estimator standard deviation vs. SNR for

QAM64 constellation (N = 500, L = 512, P = 1).
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Fig. 6. Phase estimator standard deviation vs. SNR for

QAM128 constellation (N = 2000, L = 512, P = 1).
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Fig. 7. Phase estimator standard deviation vs. SNR for

QAM256 constellation (N = 500, L = 512, P = 1).
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Fig. 8. Phase estimator standard deviation vs. SNR for

QAM512 constellation (N = 2000, L = 512, P = 1).
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