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ABSTRACT

This paper focuses on the estimation of large carrier fre-
quency offsets in QPSK modulated signals. A common ap-
proach is based on searching for the maximum of a likelihood
function. This search must be done operating over the same
block of samples, in order to avoid a noisy likelihood curve
that can lead to an erroneous estimate. We propose an effi-
cient iterative algorithm that works with different blocks of
data. This way, the need for memory is removed, and imple-
mentation costs are reduced. Additionally, the new algorithm
can be adapted to the SNR in run-time.

1. INTRODUCTION

In continuous mode transmission systems, like satellite broad-
casting, QPSK modulation is widely used. In a digital re-
ceiver, samples of the continuous–time signal are used to pro-
duce an estimation of the transmitted symbols. Most of the
receiver structures are based on the principle of synchronized
detection. That is, estimates of the synchronization parame-
ters are used in the symbol detection [1]. In order to maxi-
mize the channel efficiency, the receiver should operate in the
absence of any training sequences or pilots. That is, synchro-
nization has to be blind, i.e., non–data–aided (NDA).

Robust NDA timing synchronization algorithms require
the carrier frequency offset to be at most 10−20% of the sym-
bol rate [2]. When the frequency offset is large, a non–time–
directed (NTD) frequency estimator [1,3,4] is needed prior to
timing acquisition so as to reduce the frequency offset within
the acquisition range of the timing synchronizer. Once timing
has been acquired, powerful time–directed algorithms can be
used to improve the accuracy of the frequency estimate [1].

In this paper we focus on the estimation of large carrier
frequency offsets, that is, on the NTD stage of the formerly
described synchronization approach. During this stage, feed–
forward synchronization algorithms are preferred to avoid the
need of a NTD frequency lock detection strategy.

Nowadays, it is feasible to use a single analog to digital
converter in the receiver for different channels or signals. In
this scenario, the matched filter (MF) can be used to separate
the signal of interest. Hence, it is desirable to operate on the

output of this filter. The feed–forward NTD frequency esti-
mator presented in [3] works on the received signal before
the MF, and thus adjacent signals can affect its performance.
Another proposal is based on maximizing the likelihood func-
tion at the output of the MF [1]. An efficient implementation
of [1] is reported in [4], but it requires memory to store the
received samples during the search for the maximum.

This paper proposes a reduced complexity blind algorithm
to estimate large carrier frequency offsets. As in [1,4], it uses
the output of the MF to compute its statistics, which mini-
mizes the effect of adjacent signals. The new algorithm elim-
inates the use of data memory, so the implementation cost is
reduced. Furthermore, this algorithm can easily be adapted to
the SNR operating point in run–time.

2. DESCRIPTION OF THE PROBLEM

We consider a baseband QPSK communication system. The
received signal at the input of the matched filter is [1]:

r(kTs)=ej(2πνTkTs+θ)
NMs−1∑

n=0

ang(kTs−nT−εT )+w(kTs),

(1)
where T is the symbol period, Ts is the sampling frequency,
Ms = T/Ts is an integer number and N is the number of
symbols. {an} is a QPSK symbol sequence, g(t) is the im-
pulse response of the transmit filter and {wk} is complex
white Gaussian noise with zero mean and spectral density
No. The unknown parameters are the carrier frequency ν
(which is normalized by the symbol frequency), the carrier
phase θ, and the symbol timing ε. These parameters are inde-
pendent random variables uniformly distributed in the ranges
([−1, 1], [0, 2π], [0, T ]) respectively. We assume that ν, θ and
ε remain constant during the observation interval.

For optimum performance, the received signal should be
frequency corrected and passed through a filter matched to the
transmitter. The signal at the output of the matched filter is:

z(kTs)=
NMs−1∑

n=0

r(nTs)e−j2πν̃TnTsgMF (kTs−nTs) , (2)
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Fig. 1. Values of the likelihood function computed using dif-
ferent data blocks for each frequency trial. Es/No = 0 dB,
ν = 0.3, N = 512 symbols, L = 81, Ms = 4.

where ν̃ is the carrier frequency correction applied at the input
of the matched filter (gMF ).

In [1], an NDA and NTD unbiased estimator of the car-
rier frequency offset is obtained by maximizing the likelihood
function

Λ(z|ν) =
NMs−1∑

n=0

|z(nTs)|2 . (3)

The frequency estimate is given by:

ν̂ = arg max
ν

Λ(z|ν) . (4)

The classical approach for estimating (4) consists in defin-
ing a set of trial values {ν̃l}, l = 1, 2, . . . , L, applying them to
the signal at the input of the matched filter (2), and computing
the values {Λ(z|ν=ν̃l)}={Λl} (3). The frequency estimate is
the value ν̃m for which the computed Λm is maximum. The
search for the maximum can be performed efficiently by using
a dichotomous search [4]. It is important to note that during
this search, all the values of {Λl} must be computed using the
same block of data {rk}. If a different block of data is used
to compute each {Λl}, then the likelihood function becomes
noisy (∗ in Fig. 1), and the search for the maximum can lead
to an erroneous estimate (� in Fig. 1). Thus, in order to avoid
this problem, the search for the maximum requires a memory
with at least NMs size to store the received signal {rk}.

Fig. 2 represents the normalized mean square frequency
estimation error (MSFE) for the dichotomous search. All
the mean values shown in the figures throughout this paper
were obtained using Monte Carlo simulations, with 104 runs
per point. Simulations in Fig. 2 show that the MSFE has a
lower bound that cannot be reduced by increasing the num-
ber of iterations in the search. This lower bound is due to the
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Fig. 2. Dichotomous search using different number of itera-
tions. N = 512 symbols, Ms = 4.

length of the data observation interval, N . Hence, in order
to improve the performance, the length of the data block N ,
and thus, the size of the required memory must be enlarged,
which increases the implementation cost. As the designer has
to select the size of the memory to cope with the worst case
scenario, the design is suboptimum for better operating con-
ditions. Moreover, the selected memory fixes the minimum
SNR operating point.

In the next section, we propose a new NDA and NTD fre-
quency estimator that avoids the required memory to store the
received data. Therefore, the proposed algorithm reduces the
implementation cost and provides flexibility to the receiver.

3. DERIVATION OF THE PROPOSED FREQUENCY
ESTIMATOR

In order to avoid the required memory in the methods de-
scribed in [1] and [4], we propose to evaluate the likelihood
function using different blocks of data for each trial of {ν̃l}.
We then fit the computed values of the likelihood function to
a second–order polynomial by using a least squares approx-
imation (continuous line in Fig. 1). The frequency estimate
is the maximum of this regression curve (� in Fig. 1), which
can be computed analytically.

The generalized form of the second–order polynomial is

P (ν) = a0 + a1 · ν + a2 · ν2, (5)

where a0, a1 and a2 are constants and a2 �=0. As the likeli-
hood function is convex (see Fig. 1), a2 has to be negative.

The frequency estimate is the maximum of this polyno-
mial, which is given by

νmax =
−a1

2a2
. (6)
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Fig. 3. Approximation to a second–order polynomial. Nor-
malized frequency offset vs. mean estimated frequency off-
set. N = 512 symbols, L = 21, Ms = 4.

We simplify the computation of the coefficients a1 and a2

by setting L odd and selecting {ν̃l} equally spaced around
ν̃=0, that is, ν̃l=0 for l=(L + 1)/2, and ν̃l=−ν̃L−(l−1) for
l = 1, 2, . . . , (L−1)/2. Then, the solution of the least squares
problem yields the following coefficients:

a1 =

L∑
l=1

Λ(z|ν=ν̃l) ν̃l

L∑
l=1

ν̃2
l

(7)

a2 =

L∑
l=1

Λ(z|ν=ν̃l)
L∑

l=1

ν̃2
l − L

L∑
l=1

Λ(z|ν=ν̃l) ν̃2
l

(
L∑

l=1

ν̃2
l

)2

− L
L∑

l=1

ν̃4
l

(8)

In (7) and (8) divisions are not required, because terms
depending only on {ν̃l} and not on {Λl} do not need to be
computed in run–time. These terms can be precomputed and
stored using very little ROM. The only division required is the
one used to compute (6). However, both the division in (6)
and the multiply-accumulate (MAC) operations in (7) and (8)
do not have to work at the sampling rate. Hence, these opera-
tions can be performed with a very low implementation cost.

For small frequency offsets, the maximum of the polyno-
mial approximation, νmax, matches the estimation provided
by the search for the maximum in the likelihood function.
Nevertheless, as the frequency offset increases (0.4<|ν|<0.6),
the polynomial cannot always fit to the computed values of
the likelihood function, and νmax can be located outside the
bracketing interval [−1, 1]. In order to solve this problem,
when |νmax|>1 we select as the frequency estimate the near-
est limit of the bracketing interval from νmax. Moreover,

Table 1. Summary of the iterative polynomial method.
ν̂i=0 = 0
For i=1:n iter

• Apply a frequency correction, ν̂i−1, to the signal at
the input of the matched filter.
• Compute Λ(z|ν=ν̃l) for L trial values {ν̃l} (3).
• Compute a1 (7), a2 (8), and νmax (6).
if a2 > 0 and νmax < 0 (concavity is reversed)

∆ν̂ = 1
elseif a2 > 0 and νmax > 0 (concavity is reversed)

∆ν̂ = −1
elseif νmax<−1 (νmax out of the bracketing interval)

∆ν̂ = −1
elseif νmax > 1 (νmax out of the bracketing interval)

∆ν̂ = 1
else

∆ν̂ = νmax

end
ν̂i=ν̂i−1+∆ν̂

end

when the frequency offset approaches the limit of the bracket-
ing interval (|ν|≥0.6), the regression curve becomes concave
(a2>0). When this concavity reversal occurs, we select as the
frequency estimate the furthest limit of the bracketing inter-
val from νmax. These two special cases, maximum outside
the bracketing interval and concavity reversal, can easily be
detected by checking the overflow of νmax and the sign of a2

and νmax respectively. Both checks are very simple to imple-
ment.

Fig. 3 represents the normalized frequency offset versus
the mean of the estimated frequency offset for the polynomial
approximation using the stated rules. Fig. 3 shows that for
large frequency offsets, the polynomial approximation yields
a biased estimate. In order to overcome this bias and be able
to acquire ν in the whole range |ν|<1, we propose to make the
estimator iterative. Table 1 summarizes the proposed iterative
polynomial method. Initially, we set ν̂i=0=0. In each iter-
ation the polynomial approximation together with the stated
rules produce a frequency estimate, ∆ν̂. Then, ν̂i=ν̂i−1+∆ν̂
is used as a frequency correction factor at the input of the
matched filter before the next estimation. Iterations can be
stopped by a tolerance criterion around ∆ν̂=0. However, set-
ting a fixed number of iterations simplifies the control.

4. SIMULATION RESULTS

The MSFE of the proposed iterative frequency estimator has
been evaluated in order to assess its performance. The MSFE
of the dichotomous search for 12 iterations is used as a refer-
ence.

The proposed iterative algorithm has three parameters:
the number of points used for each least squares approxima-
tion, L, the number of iterations that are carried out, n iter,
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Fig. 4. Iterative polynomial method. Several number of iter-
ations, n iter. L = 21, N = 512 symbols, Ms = 4. The
dashed line is the MSFE of the dichotomous search.

and the length of the data observation interval, N .
Fig. 4 shows the MSFE for several numbers of iterations.

It can be seen that as n iter increases, the MSFE decreases.
For N=512 and L=21, six iterations are enough to achieve
the minimum MSFE (◦ in Fig. 4). Fig. 5 shows the MSFE
when different number of points are used to perform the poly-
nomial fitting in each iteration. It is observed that the MSFE
can be reduced by increasing L. Increasing the length of the
data block N also reduces the MSFE, thought due to lack of
space this result is not reported in this paper.

The time required by the proposed algorithm to perform
frequency estimation is proportional to n iter·L·N . There-
fore, Figs. 4 and 5 can be used to make a trade–off between
the value of the MSFE and the estimation time. For exam-
ple, when N=512, 5 iterations (n iter=5) and 5 frequency
trials per iteration (L=5) are enough for the iterative estima-
tor to outperform the MSFE of the dichotomous search in the
SNR operating range of interest for most applications (� in
Fig. 5). Even though a longer processing time is needed, this
performance improvement is achieved with less complexity.

Furthermore, in the proposed algorithm, the values of N
and n iter can easily be changed during run–time in order
to adapt them to the SNR operating point and to the required
MSFE. This makes the receiver flexible since it can choose its
parameters to adapt to the channel requirements, even to new
channel conditions. This is achieved with no extra implemen-
tation costs because it only has to change the estimation time.

5. CONCLUSIONS

We have considered the problem of estimating large carrier
frequency offsets without timing information. The classical
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Fig. 5. Iterative polynomial method. Several number of fre-
quency trials, L. n iter = 6, N = 512 symbols, Ms = 4.
The dashed line is the MSFE of the dichotomous search.

approach based on the maximum–likelihood principle needs
memory in order to store the received signal. This introduces
a penalty in the implementation cost. Additionally, the size
of this memory fixes the lowest SNR operating point of the
algorithm.

This paper proposes a new algorithm that does not require
such data memory, which reduces the implementation com-
plexity. Moreover, the proposed synchronization algorithm
can easily be adapted in run–time to the SNR of the received
signal.
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