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ABSTRACT

This paper analytically calculates the expectation and the
variance of a soft-information-based best linear unbiased
estimator of amplitude and carrier phase offset. Long data
frames are considered.

The calculation includes the impact on the perfor-
mance of the presence of training symbols as well as non-
gaussianity of the Log-Likelihood Ratios (LLRs) fed to the
estimator input. It is also analyzed how the properties of the
estimator are affected when the ratio between the mean and
variance of the LLRs is not equal to 1/2.

1. INTRODUCTION

The performance of digital communication systems relies
on the availability of accurate estimates of parameters like
the amplitude, the carrier phase offset, the propagation de-
lay and, in case of frequency-selective channels, of the
channel taps. In systems operating at low signal-to-noise ra-
tios, iterative estimators (see references in [1]) prevent from
using a prohibitive number of training symbols. They ex-
ploit soft information provided by a turbo receiver. Among
them, an expectation-maximization (EM) algorithm-based
estimator [1] is a possible solution. However, despite a con-
vergence towards the optimal maximum likelihood estimate
ensured under mild conditions, the EM algorithm gives no
guarantee about the estimate quality throughout the itera-
tions. Besides, the EM estimator turns out to be strongly
biased is some cases especially during the first turbo itera-
tions when the quality of soft information is quite poor.

The goal of this paper is to calculate the expectation and
the variance of a soft-information-based best linear unbi-
ased estimator of amplitude and carrier phase offset. Long
data frames are considered. The estimator is a good trade-
off between complexity and performance. Indeed, from the
one hand, it is linear in the observations vector output by
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the channel. From the other hand, by design, it delivers,
given the available soft information and given this linear-
ity constraint, an unbiased and minimum-variance estimate.
The estimator is here restricted to BPSK data modulation.
An extension of the analysis to multi-level data modulation
and to several-tap channel estimation would not present any
major difficulty. It is not done here for the sake of notations
clarity.

The paper also explains how to calculate the impact on
the performance of the presence of training symbols as well
as non-gaussianity of the Log-Likelihood ratios (LLRs) fed
to the estimator input. It is also analyzed how the proper-
ties of the estimator are affected when the ratio between the
mean and variance of the LLRs is not equal to 1/2.

The sequel of this paper will be organized as follows.
The system model will be presented in section 2. Section
3 will give the expression of our estimator. It will also cal-
culate its performance in terms of expectation and variance.
Finally, section 4 will compare the estimator performance
obtained by simulations with that obtained by our calcula-
tions.

2. SYSTEM MODEL

In this section, the transmitter model and the iterative re-
ceiver will be successively presented.

2.1. Transmitter model

The transmission scheme is the following. A frame of in-
formation bits ui is encoded by a rate-r convolutional en-
coder. The resulting encoded bits xj are interleaved us-
ing a random permutation function to give the interleaved
coded bits xk. These bits are then mapped onto BPSK
symbols sk ∈ {+1,−1} according to sk = 2xk − 1
(1 ≤ k ≤ K where K is the number of data symbols in
a frame). These BPSK symbols are preceded by T training
symbols sk ∈ {+1,−1} with −T + 1 ≤ k ≤ 0 and then
transmitted over an AWGN channel. After matched filtering
at the receiver, the observations yk may thus be expressed
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as (−T + 1 ≤ k ≤ K)

yk = w sk + nk, (1)

where nk are Gaussian noise samples of variance σ2
n. Vari-

able w = Aej θ denotes the complex amplitude i.e. A is the
channel gain and θ is the carrier phase offset.

2.2. Iterative receiver

The receiver is made up with our estimator of complex am-
plitude w and with a classical turbo receiver like in [2]. The
estimator will be presented and analyzed in details in sec-
tion 3. The turbo receiver includes a soft-in soft-out (SISO)
decoder. Extrinsic LLRs on coded bits output by the de-
coder are fed back to the estimator in order to improve its
performance. These LLRs are regarded as a second source
of information on the transmitted data symbols at the esti-
mator disposal apart from the channel observations.

3. SOFT-INFORMATION-BASED BEST LINEAR
UNBIASED ESTIMATOR OF COMPLEX

AMPLITUDE

In this section, we will first give the expression of our soft-
information-based best linear unbiased estimator of com-
plex amplitude (subsection 3.1). Secondly, we will calculate
its expectation and variance (subsection 3.2).

3.1. Expression of soft-information-based best linear
unbiased estimator

As said in the introduction, we restrict ourselves to BPSK
data modulation. Let L(n−1)(xk) (1 ≤ k ≤ K) denote the
extrinsic LLRs on coded bits xk output by the decoder at
turbo iteration n − 1. These extrinsic LLRs are regarded as
random variables with conditional probability density func-
tion (pdf) p(L(n−1)(xk)|sk). They are commonly approxi-
mated as Gaussian random variables [3]:

L(n−1)(xk) = µ(n) sk + ν
(n)
k , (2)

with mean µ(n) and variance σ2 (n) (i.e. ν
(n)
k ∼

N (0, σ2 (n))). In this case,

p(L(n−1)(xk)|sk)

=
1√

2π σ2 (n)
exp

(−(L(n−1)(xk) − µ(n) sk)2

2σ2 (n)

)
. (3)

Let now also Es|L(n−1),n{q} denote the joint expectation of
any random variable q with respect to both the symbols sk

given the extrinsic LLRs L(n−1)(xk) and to channel noise
nk.

In a first step, we will assume that T = 0 i.e. no training
symbols is used. We want to find a linear estimator which
given the available extrinsic LLRs output by the decoder

at each turbo iteration is both unbiased and of minimum
variance by design. In mathematical terms, this means that
we search for an estimate of w at iteration n, denoted by
ŵ(n), which is given by ŵ(n) =

∑K

k=1 c
(n)
k yk where the

coefficients c
(n)
k are chosen such that Es|L(n−1),n{ŵ(n)} =

w and Es|L(n−1),n{|ŵ(n)|2} − |w|2 is minimum. It may be
easily shown that

ŵ(n) =
1∑K

k=1

(
η
(n−1)
k

)2

K∑
k=1

η
(n−1)
k yk, (4)

where η
(n−1)
k is the extrinsic average value of symbol sk at

iteration n − 1 calculated from L(n−1)(xk) as:

η
(n−1)
k = tanh

(
L(n−1)(xk)

2

)
. (5)

In the calculation of coefficients c
(n)
k , we supposed (2) and

µ(n)/σ2 (n) = 1/2 1. Indeed, since the ratio µ(n)/σ2 (n) is
not here assumed to be estimated at the receiver, the esti-
mator considers it to be equal to 1/2 which is not exactly
the case in practice. Subsection 3.2 will take into account in
the performance calculation possible non-gaussianity of the
extrinsic LLRs as well as µ(n)/σ2 (n) �= 1/2.

3.2. Calculation of the estimator expectation and vari-
ance

Let us now calculate EL(n−1),s,n{ŵ(n)
EM}, the joint expecta-

tion of ŵ(n) with respect to the symbols sk, to a posteriori
LLRs L(n−1)(xk) and to noise nk. Using (1), (4), the inde-
pendence of nk and sk, assuming that of nk and L(n−1)(xk)
and supposing long enough frames, it is shown in the ap-
pendix that

EL(n−1),s,n{ŵ(n)} ∼=
(
α(n)

v /α(n)
)

w. (6)

Variable α
(n)
v � EL(n−1),s{η(n−1)

k sk} may be calculated
as

α(n)
v =

∫ +∞

−∞

tanh
(z

2

) 1

2

[
p(z|sk = +1) − p(z|sk = −1)

]
dz,

(7)

whereas α(n) � EL(n−1),s{ (η
(n−1)
k )2} is given by

α(n) =

∫ +∞

−∞

tanh2
(z

2

) 1

2

[
p(z|sk = +1) + p(z|sk = −1)

]
dz.

(8)

Variable z in (7) and (8) is an integration variable replacing
L(n−1)(xk) in order not to encumber the notations. It re-
sults from their definitions that both α

(n)
v and α(n) are real

and 0 ≤ α
(n)
v , α(n) ≤ 1.

1which is commonly used [3] although it is not always very accurate
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If the Gaussian assumption (2) is made on L(n−1)(xk),
combining (3) and (7) leads to

α(n)
v =

∫ +∞

−∞

tanh
(z

2

)
tanh

(
µ(n) z

σ2 (n)

)
1

2

1√
2π σ2 (n)[

exp

(−(z − µ(n))2

2σ2 (n)

)
+ exp

(−(z + µ(n))2

2σ2 (n)

)]
dz,

(9)

whereas combining (3) and (8) results in

α(n) =

∫ +∞

−∞

tanh2
(z

2

) 1

2

1√
2π σ2 (n)[

exp

(−(z − µ(n))2

2σ2 (n)

)
+ exp

(−(z + µ(n))2

2σ2 (n)

)]
dz.

(10)

Thanks to (9) and (10), we notice that α
(n)
v = α(n)

if the Gaussian assumption on L(n−1)(xk) is valid
and if µ(n)/σ2 (n) = 1/2. In this case, by (6),
EL(n−1),s,n{ŵ(n)} = w. Otherwise, α

(n)
v �= α(n) and the

estimate is biased. This is not suprising since the estimator
has been derived precisely assuming the Gaussian assump-
tion on L(n−1)(xk) and µ(n)/σ2 (n) = 1/2.

After the expectation of the estimate, let us now cal-
culate its variance: var{ŵ(n)} = EL(n−1),s,n{|ŵ(n)|2} −
|EL(n−1),s,n{ŵ(n)}|2. Using again (1), (4), resorting to the
same independence assumptions as for the calculation of
EL(n−1),s,n{ŵ(n)} and still assuming long enough frames,
the appendix calculates the first term of the variance. The
second term is computed thanks to (6). It eventually results
that

var{ŵ(n)} ∼= σ2
n

K α(n)
+

[
α(n) −

(
α

(n)
v

)2
]
|w|2

K (α(n))2
. (11)

Let us now take the training symbols into account. In-
corporating the T training symbols into the frame, the esti-
mate at iteration n, denoted by ŵ

(n)
p , becomes

ŵ(n)
p =

1

T + K

(
T ŵT + K ŵ(n)

)
, (12)

where ŵT � 1
T

∑0
k=−T+1 sk yk is an unbiased estimator

(i.e. Es,n{ŵT } = w) with variance var{ŵT } = σ2
n/T [4].

It is easy to show using (6) and (11) that

EL(n−1),s,n{ŵ(n)
p } ∼= T + (α

(n)
v /α(n))K

K + T
w, (13)

var{ŵ(n)
p } ∼= (T + K/α(n))σ2

n

(T + K)2
+

K

[
α(n) −

(
α

(n)
v

)2
]
|w|2

(T + K)2 (α(n))2
.

(14)
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Fig. 1. Normalized bias of ŵ
(n)
p (i.e. bias of ŵ

(n)
p divided by

w) versus µ(n) for different values of µ(n)/σ2(n). Comparison

between calculations (solid lines) and simulations (dotted lines).

T = 10, K = 1028, Es/N0 = 4dB, w = 1.0 ej 45◦ .

4. RESULTS

In this section, we wanted to focus on the estimator behav-
ior independently of the other receiver blocks. So we did
not simulate our estimator when embedding it into a turbo
receiver. We just imposed at the estimator input perfectly
Gaussian LLRs independent of the channel observations.
Frames of K = 1024 BPSK symbols completed by T = 10
training symbols were used. We chose Es/N0 = |w|2/σ2

n

equal to 4dB and an actual value of w equal to 1.0 ej 45◦

.

Fig. 1 shows the bias b{ŵ(n)
p } of ŵ

(n)
p divided by w

versus µ(n) for different values of the ratio µ(n)/σ2(n) :
0.3, 0.4, 0.5, 0.6, 0.7. Fig. 2 shows the mean square error
(MSE) of ŵ

(n)
p (MSE of ŵ

(n)
p = var{ŵ(n)

p } + |b{ŵ(n)
p }|2)

versus µ(n). Curves giving the MSE of ŵT (estimator with
the training symbols only) and the asymptotical value of the
MSE (i.e. when µ(n) → ∞) are also represented. This lat-
ter curve is also the Cramer Rao bound in data-aided mode
[4].

In each figure, the solid curves represent the results ob-
tained by simulations of the estimator behavior whereas the
dashed curves are for the results obtained by (13) and (14).
In both figures, solid and dashed curves are close to each
other and even tend to be indiscernible (especially in fig. 1)
which shows the accuracy of our calculations. The remain-
ing gap is due to the long frames approximation. We also
observe that the best estimator performance is obtained with
µ(n)/σ2(n) = 0.5, i.e. the mean-to-variance ratio for which
the estimator has been designed (see subsection 3.1).
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Fig. 2. Mean square error (MSE) of ŵ
(n)
p versus µ(n) for dif-

ferent values of µ(n)/σ2(n). Comparison between calculations

(solid lines) and simulations (dotted lines). T = 10, K = 1028,

Es/N0 = 4dB, w = 1.0 ej 45◦ .

5. CONCLUSION

This paper analytically calculates the expectation and the
variance of a soft-information-based best linear unbiased
estimator of amplitude and carrier phase offset. Long data
frames are considered.

The presence of training symbols as well as non-
gaussianity of the Log-Likelihood Ratios (LLRs) fed to the
estimator input are considered in the calculations. The im-
pact of a mean-to-variance ratio of the LLRs not equal to
1/2 was also taken into account and illustrated in the results
section.

The spirit of the paper may be extended to the calcula-
tion of the expectation and variance of a several-tap channel
estimator as well as to multi-level modulation.
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7. APPENDIX

Let us first prove (6), (7) and (8). For long enough frames, we

notice that α̂(n) � (1/K)
PK

k=1(η
(n−1)
k )2 is a good approxi-

mation of α(n) (= α
(n)
v if the Gaussian assumption is valid and

µ(n)/σ2 (n) = 1/2). Thus, we will approximate
PK

k=1(η
(n−1)
k )2

by Kα(n) in the sequel. Using this, (1), (4), the independence of

nk and sk and assuming that of nk and L(n−1)(xk), we may write

EL(n−1),s,n{ŵ
(n)} =

1

K α(n)

KX
k=1

“
EL(n−1),s{η

(n−1)
k sk}w

+EL(n−1),s{η
(n−1)
k }En{nk}

”
=

“
α(n)

v /α(n)
”

w,

where α
(n)
v � EL(n−1),s{η

(n−1)
k sk}. This variable is given by

α(n)
v = Es

j
EL(n−1)|s

j
tanh

„
L(n−1)(xk)

2

«
sk

ffff

= EL(n−1)|s

j
tanh

„
L(n−1)(xk)

2

« ˛̨̨
sk=+1

(+1)

ff
1

2

+ EL(n−1)|s

j
tanh

„
L(n−1)(xk)

2

« ˛̨̨
sk=−1

(−1)

ff
1

2

which eventually leads to (7). The factors 1/2 are respectively

for a priori probabilities p(sk = +1) and p(sk = −1). Variable

α(n) � EL(n−1),s{ (η
(n−1)
k )2} may be calculated by the kind of

same reasoning. It results that

α(n) =

Z +∞

−∞

tanh2
“z

2

” 1

2

h
p(z|sk = +1) + p(z|sk = −1)

i
dz.

We eventually obtained (6), (7) and (8).

Let us now prove (11) still assuming long enough frames.

EL(n−1),s,n

j˛̨̨
ŵ(n)

˛̨̨2ff

=
1

K2 (α(n))
2

KX
k=1

KX
k′=1

"
EL(n−1),s

n
|w|2 η

(n−1)
k η

(n−1)

k′ sk sk′

o

+ EL(n−1),s

n
η
(n−1)
k η

(n−1)

k′

o
En {nkn∗

k′}

#
.

If k �= k′, we have

EL(n−1),s

n
|w|2 η

(n−1)
k η

(n−1)

k′ sk sk′

o
= |w|2 EL(n−1),s

n
η
(n−1)
k sk

o
EL(n−1),s

n
η
(n−1)

k′ sk′

o
= |w|2 α(n)

v α(n)
v =

“
α(n)

v

”2

|w|2,

whereas, for k = k′,

EL(n−1),s

j
|w|2

“
η
(n−1)
k

”2

s2
k

ff

= |w|2 EL(n−1),s

j “
η
(n−1)
k

”2
ff

= α(n) |w|2.

Since En {nkn∗
k′} = σ2

n δ(k − k′), we have all the elements

to calculate EL(n−1),s,n{|ŵ
(n)|2} and thus var{ŵ(n)} which may

be written as (11).
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