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ABSTRACT

This paper deals with iterative maximum-likelihood syn-
chronization of a scalar parameter. An efficient implemen-
tation of the Newton-Raphson (NR) maximum-search method
is proposed. Considering the latter implementation, the NR
approach is shown to be an attractive alternative to synchro-
nization methods based on the expectation-maximization (EM)
algorithm. Simulation results for the case of phase-offset
synchronization show that NR method usually increases the
speed of convergence of the synchronization algorithm.

1. INTRODUCTION

Since the discovery of the turbo principle by Berrou and
Glavieux, code-aided (CA) synchronization has become
a central problem. Conventional non-data-aided (NDA)
synchronizers, which operate properly at medium-to-high
signal-to-noise ratios (SNR), exhibit poor performance at
the very low operating point of turbo receivers. Unfortu-
nately, maximum-likelihood (ML) CA synchronization is
an intrinsicly complex problem. Hence, iterative synchro-
nization algorithms have been proposed to solve the CA
ML problem, see e.g. [1], [2], [3], [4]. In [1], [2], the au-
thors propose to solve the ML problem via the expectation-
maximization (EM) algorithm [5]. In [3], [4], the synchro-
nization problem is placed into the context of the factor
graphs and the sum-product algorithm [6]. This approach
leads to iterative synchronization algorithms in which an in-
termediate maximum-likelihood problem has to be solved at
each iteration. In this paper, we show that ML synchroniza-
tion problems may be solved efficiently using the Newton-
Raphson maximization method. In particular, we show that
simple analytical expressions may be found for the first and
second derivatives of the likelihood function.

2. ML ESTIMATION IN THE PRESENCE OF A
NUISANCE VECTOR

Let r denote a vector of observations and let b indicate a de-
terministic scalar parameter to be estimated from the obser-
vations r. Assume that r also depends on a random discrete-

valued nuisance vector a independent of b and with a priori
probability p(a). The problem addressed in this paper is to
find the ML estimate b̂ML of b that is to say the solution of

b̂ML = arg max
b̃

{
ln p(r|b = b̃)

}
, (1)

where
p(r|b) =

∑
a

p(r|a, b) p(a), (2)

and b̃ is a trial value of b. Most of the time there is unfor-
tunately no analytical solution to such a problem. In this
case one has to use iterative numerical methods to find the
solution of (1). In the sequel we compare two well-known
methods used to iteratively search the maximum of a func-
tion: the expectation-maximization (EM) algorithm and the
Newton-Raphson (NR) method.

3. THE EXPECTATION-MAXIMIZATION
ALGORITHM

Like many other methods, the EM algorithm [5] is a method
for finding the zeros of a function, namely ∂ ln p(r|b)

∂b
. Using

the formalism of the EM algorithm, let us set r as the in-
complete data set and z � [r,a] as the complete data set.
The EM algorithm states that the sequence b̂(n) defined as

Q(b, b̂(n−1)) =

∫
z

p(z|r, b̂(n−1)) ln p(z|b) dz (3)

b̂(n) = arg max
b̃

{
Q(b = b̃, b̂(n−1))

}
(4)

converges towards either a saddle point or a maximum
of (2). Local minima are avoided. In practice, the final
convergence point of the EM algorithm depends on the
initialization value. The EM algorithm exhibits a linear
speed of convergence. Its rate of convergence is a function
of the quantity of missing information in the incomplete
data set [5].

In the particular case of parameter b estimation in the
presence of independent nuisance vector a, the Q-function
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has the following structure (see [1]):

Q(b̃, b̂(n−1)) =
∑
a

p(a|r, b = b̂(n−1)) ln p(r|a, b = b̃)

= E
a|r,b=b̂(n−1)

[
ln p(r|a, b = b̃)

]
. (5)

The solution of (1) can therefore be found iteratively by only
using posterior probabilities p(a|r, b) and the log-likelihood
function ln p(r|a, b).

4. THE NEWTON-RAPHSON METHOD

Another well-known method for finding the zeros of a func-
tion is the Newton-Raphson (NR) method. The sequence of
estimates computed by the NR method may be written as

b̂(n) = b̂(n−1) −

(
∂2

∂b2
ln p(r|b)

)−1 (
∂

∂b
ln p(r|b)

)
∣∣b=b̂(n−1)

.

(6)

The NR method may converge to saddle points and maxima
but also to minima. As the EM algorithm, its ultimate point
of convergence depends on the initial estimate.

The speed of convergence of the NR approach is
quadratic [7]. This very-fast speed of convergence is of-
ten regarded as the major strength of the NR method. Apart
from its possible convergence to minima, the evaluation of
the first and second derivatives of ln p(r|b) is often consid-
ered as one of the major drawback of the method. In [8], an
efficient way to compute the first derivative is proposed, i.e.(

∂

∂b
ln p(r|b)

)
∣∣b=b̃

=

(
E

a|r,b

[
∂

∂b
ln p(r|a, b)

])
∣∣b=b̃

.

(7)

In this paper, we derive an expression (see the appendix for
the details) which enables to efficiently compute the second
derivative of ln p(r|b), namely(

∂2

∂b2
ln p(r|b)

)
∣∣b=b̃

=

(
E

a|r,b

[
∂2

∂b2
ln p(r|a, b)

])
∣∣b=b̃

+

(
E

a|r,b

[(
∂

∂b
ln p(r|a, b)

)2
])

∣∣b=b̃

−

(
E

a|r,b

[
∂

∂b
ln p(r|a, b)

])2

∣∣b=b̃

.

(8)

As the EM algorithm, the NR method may therefore be im-
plemented by using posterior probabilities p(a|r, b) and the
log-likelihood function ln p(r|a, b).

5. ITERATIVE SYNCHRONIZATION

In this section we apply the general frameworks of the pre-
vious sections to the particular case of the synchronization
of a digital data-modulated bandpass signal. In this context,
the nuisance parameter vector a contains the values of the
K unknown transmitted data symbols (a0, a1, ..., aK−1) ∈
AK where A is the constellation alphabet. We assume that
the parameter b to estimate can be either the symbol timing
τ , the carrier frequency offset ν or the phase offset θ. For
the sake of simplicity we will consider an AWGN channel
in the sequel. The baseband received samples r(lTs) can
then be written as

r(lTs) =

K−1∑
k=0

ak p(lTs − kT − τ) ej(2πνlTs+θ) + w(lTs),

(9)
where Ts is the sampling period, T is the symbol period,
p(t) is a unit-energy square-root raised-cosine pulse and
w(lTs) is a complex-valued AWGN with variance σ2

w.

Neglecting terms independent of b, the log-likelihood
function ln p(r|a, b) present in (5), (7) and (8) can be written
as

ln p(r|a, b) = −
2

σ2
w

Re
{K−1∑

k=0

a∗
k yk(ν, τ) e−jθ

}
, (10)

where

yk(ν, τ)
�
= Ts

∑
l

r(lTs) e−j(2πνlTs) p(lTs − kT − τ).

In the remainder of this section we particularize the EM and
NR equations to (10).

5.1. EM Synchronization

Let us define for each transmitted symbol ak

ηk(b̂(n−1))
�
=

∑
a∈A

a p(ak = a|r, b̂(n−1)). (11)

Using this definition and replacing ln p(r|a, b) by (10) in
(5), we get

Q(b, b̂(n−1)) = −
2

σ2
w

Re
{K−1∑

k=0

η∗
k(b̂(n−1)) yk(ν, τ) e−jθ

}
.

(12)

If we consider the case b = θ, the maximization of (12) has
an analytical solution:

θ̂(n) = arg
{K−1∑

k=0

η∗
k(θ̂(n−1)) yk(ν, τ)

}
. (13)
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On the contrary, there are no analytical solutions for the
cases b = τ or b = ν. In such cases, we still have to re-
sort to numerical maximum-search method to solve the in-
termediate maximization problem (4), see e.g. [2]. We also
notice from (11) that the evaluation of (12) only requires
the knowledge of the posterior marginals p(ak|r, b̂

(n−1)).
The computation of these probabilities usually dominates
the complexity of the implementation of an EM synchro-
nizer. In the case of a convolutionally-coded transmission,
this requires for example a decoding operation via a BCJR
algorithm.

5.2. NR Synchronization

For the sake of conciseness, we only consider the case b =
θ. The cases b = τ or b = ν are similar and their derivation
is straightforward. Particularizing (7) and (8) to (10) with
b = θ, we have

∂ ln p(r|θ)

∂θ
=

2

σ2
w

Im
{∑

k

η∗
k(θ) yk(ν, τ) e−jθ

}
,

∂2 ln p(r|θ)

∂θ2
= −

2

σ2
w

Re
{∑

k

η∗
k(θ) yk(ν, τ) e−jθ

}

+
2

σ4
w

Re
{∑

k,l

ρk,l(θ) yk(ν, τ) y∗
l (ν, τ)

}

−
2

σ4
w

Re
{∑

k,l

ε∗k,l(θ) yk(ν, τ) yl(ν, τ) e−j2θ
}

,

where

ρk,l(θ) �
∑

a′,a∈A

a∗ a′ p(ak = a, al = a′|r, θ) − η∗
k(θ) ηl(θ),

εk,l(θ) �
∑

a,a′∈A

a a′ p(ak = a, al = a′|r, θ) − ηk(θ) ηl(θ).

From the latter definitions, we note that the implementation
of the NR maximization method requires the knowledge of
joint probabilities p(ak, al|r, θ). These probabilities are not
available in practical receivers. We will therefore assume
that p(ak, al|r, θ) may be well-approximated as

p(ak, al|r, θ) � p(ak|r, θ) p(al|r, θ), (14)

i.e. by the product of its marginals. Doing this approxima-
tion, εk,l = 0 and ρk,l = 0 ∀ k �= l. The expression of the
second derivative therefore simplifies as

∂2 ln p(r|θ)

∂θ2
= −

2

σ2
w

Re
{∑

k

η∗
k(θ) yk(ν, τ) e−jθ

}

+
2

σ4
w

Re
{∑

k

ρk,k(θ) |yk(ν, τ)|2
}

−
2

σ4
w

Re
{∑

k

ε∗k,k(θ) y2
k(ν, τ) e−j2θ

}
. (15)

Doing approximation (14), the NR implementation
complexity is usually dominated by the computation of
marginals p(ak|r, θ). In such a case, the complexity order
of one (approximated) NR iteration is similar to the EM
case.

Note that (14) is no longer an approximation when
p(a) =

∏
k p(ak). It is for example the case for NDA syn-

chronization. It is also the case in the context of factor-
graph-based synchronization proposed in [3] and [4]. In-
deed, in the latter case, it is shown in [4] that the ”intermedi-
ate” likelihood function which has to be maximized at each
SP iteration assumes p(a) =

∏
k pext(ak) where pext(ak)

is the extrinsic probability about symbol ak. We consider
the latter case in the next section.

6. NUMERICAL RESULTS

We consider carrier phase estimation for a 8-PSK trans-
mission. Other synchronization parameters are assumed
to be known and K = 1000. The Es/N0-ratio is set
to 4.77dB. We asssume perfect phase ambiguity resolu-
tion so that |θ̂ − θ| ≤ π/8. In the factor-graph approach
[3]-[4], we have pext(ak) =

∏
l pext(ck,l) where ck,l de-

notes the lth bit making up the kth transmitted symbols.
Probabilities pext(ck,l) are assumed to derive from extrin-
sic log-likelihood ratios (LLRs) Lext(ck,l). We randomly
generate extrinsic LLRs according to a Gaussian distrib-
ution N (σ2/2, σ2). The latter distribution is parameter-
ized by mutual information I(ck,l, Lext(ck,l)), which uni-
voquely defines parameter σ2. Fig. 1 shows the mean
square error (MSE) as a function of the number of itera-
tions for the EM and NR methods. We prevent the con-
vergence of the NR method to local minima by correcting
the estimate as θ̂ = θ̂ − π/8 when the second derivative
is positive. We consider I(ck,l, Lext(ck,l)) equal to 0, 0.2,
0.8 and 1. I(ck,l, Lext(ck,l)) = 0 corresponds to the NDA
case whereas I(ck,l, Lext(ck,l)) = 1 corresponds to a per-
fect knowledge of the transmitted symbols. We note that
the EM-algorithm convergence is strongly affected by the
amount of information available about the transmitted sym-
bols. On the contrary the NR convergence is always quite
fast irrespective of the available symbol information. As
a consequence, we note that, in the considered case, the
NR method should be prefered when the amount of infor-
mation about the transmitted symbols is low. On the con-
trary, the EM algorithm seems to be the best solution when
I(ck,l, Lext(ck,l)) is large since it exhibits about the same
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Fig. 1. Phase-estimation mean square error for I(ck,l, Lext(ck,l))

equal to 0 (circle), 0.2 (square), 0.8 (triangle) and 1 (star).

speed of convergence as the NR approach while slightly less
complex to implement.

7. CONCLUSION

We propose an efficient implementation of the NR method
in the context of synchronization. On the one hand we show
that the proposed NR implementation has, up to an approx-
imation, a complexity order per iteration similar to the EM
algorithm. On the other hand, we illustrate that the NR
method converges in some cases much faster than the EM
algorithm. As a conclusion, we emphasize that, thanks to
the proposed implemention, the NR method may be an at-
tractive candidate for iterative resolution of ML problems.

8. APPENDIX

In this appendix, we show that equality (8) holds. From (7)
we have

∂ ln p(r|b)

∂b
= E

a|r,b

[
∂ ln p(r|a, b)

∂b

]
,

=
∑
a

p(a|r, b)
∂ ln p(r|a, b)

∂b
. (16)

Applying the derivative operator on (16), we get

∂2 ln p(r|b)

∂b2
=

∑
a

p(a|r, b)
∂2 ln p(r|a, b)

∂b2

+
∑
a

∂p(a|r, b)

∂b

∂ ln p(r|a, b)

∂b
(17)

Note that ∂p(a|r,b)
∂b

may also be expressed as

∂p(a|r, b)

∂b
= p(a|r, b)

∂ ln p(a|r, b)

∂b
.

Taking then into account that p(a|r, b) = p(r|a,b)p(a)
p(r|b) , we

have

∂p(a|r, b)

∂b
= p(a|r, b)

(
∂ ln p(r|a, b)

∂b
−

∂ ln p(r|b)

∂b

)
.

(18)

Plugging (18) into (17), we get

∂2 ln p(r|b)

∂b2
=

∑
a

p(a|r, b)
∂2 ln p(r|a, b)

∂b2

+
∑
a

p(a|r, b)

(
∂ ln p(r|a, b)

∂b

)2

−

(∑
a

p(a|r, b)
∂ ln p(r|a, b)

∂b

)2

, (19)

where the last term in (19) follows from (16).
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